/* pigz.c -- parallel implementation of gzip * Copyright (C) 2007-2023 Mark Adler * Version 2.8 19 Aug 2023 Mark Adler */ /* This software is provided 'as-is', without any express or implied warranty. In no event will the author be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Mark Adler madler@alumni.caltech.edu */ /* Version history: 1.0 17 Jan 2007 First version, pipe only 1.1 28 Jan 2007 Avoid void * arithmetic (some compilers don't get that) Add note about requiring zlib 1.2.3 Allow compression level 0 (no compression) Completely rewrite parallelism -- add a write thread Use deflateSetDictionary() to make use of history Tune argument defaults to best performance on four cores 1.2.1 1 Feb 2007 Add long command line options, add all gzip options Add debugging options 1.2.2 19 Feb 2007 Add list (--list) function Process file names on command line, write .gz output Write name and time in gzip header, set output file time Implement all command line options except --recursive Add --keep option to prevent deleting input files Add thread tracing information with -vv used Copy crc32_combine() from zlib (shared libraries issue) 1.3 25 Feb 2007 Implement --recursive Expand help to show all options Show help if no arguments or output piping are provided Process options in GZIP environment variable Add progress indicator to write thread if --verbose 1.4 4 Mar 2007 Add --independent to facilitate damaged file recovery Reallocate jobs for new --blocksize or --processes Do not delete original if writing to stdout Allow --processes 1, which does no threading Add NOTHREAD define to compile without threads Incorporate license text from zlib in source code 1.5 25 Mar 2007 Reinitialize jobs for new compression level Copy attributes and owner from input file to output file Add decompression and testing Add -lt (or -ltv) to show all entries and proper lengths Add decompression, testing, listing of LZW (.Z) files Only generate and show trace log if DEBUG defined Take "-" argument to mean read file from stdin 1.6 30 Mar 2007 Add zlib stream compression (--zlib), and decompression 1.7 29 Apr 2007 Decompress first entry of a zip file (if deflated) Avoid empty deflate blocks at end of deflate stream Show zlib check value (Adler-32) when listing Don't complain when decompressing empty file Warn about trailing junk for gzip and zlib streams Make listings consistent, ignore gzip extra flags Add zip stream compression (--zip) 1.8 13 May 2007 Document --zip option in help output 2.0 19 Oct 2008 Complete rewrite of thread usage and synchronization Use polling threads and a pool of memory buffers Remove direct pthread library use, hide in yarn.c 2.0.1 20 Oct 2008 Check version of zlib at compile time, need >= 1.2.3 2.1 24 Oct 2008 Decompress with read, write, inflate, and check threads Remove spurious use of ctime_r(), ctime() more portable Change application of job->calc lock to be a semaphore Detect size of off_t at run time to select %lu vs. %llu #define large file support macro even if not __linux__ Remove _LARGEFILE64_SOURCE, _FILE_OFFSET_BITS is enough Detect file-too-large error and report, blame build Replace check combination routines with those from zlib 2.1.1 28 Oct 2008 Fix a leak for files with an integer number of blocks Update for yarn 1.1 (yarn_prefix and yarn_abort) 2.1.2 30 Oct 2008 Work around use of beta zlib in production systems 2.1.3 8 Nov 2008 Don't use zlib combination routines, put back in pigz 2.1.4 9 Nov 2008 Fix bug when decompressing very short files 2.1.5 20 Jul 2009 Added 2008, 2009 to --license statement Allow numeric parameter immediately after -p or -b Enforce parameter after -p, -b, -s, before other options Enforce numeric parameters to have only numeric digits Try to determine the number of processors for -p default Fix --suffix short option to be -S to match gzip [Bloch] Decompress if executable named "unpigz" [Amundsen] Add a little bit of testing to Makefile 2.1.6 17 Jan 2010 Added pigz.spec to distribution for RPM systems [Brown] Avoid some compiler warnings Process symbolic links if piping to stdout [Hoffstätte] Decompress if executable named "gunzip" [Hoffstätte] Allow ".tgz" suffix [Chernookiy] Fix adler32 comparison on .zz files 2.1.7 17 Dec 2011 Avoid unused parameter warning in reenter() Don't assume 2's complement ints in compress_thread() Replicate gzip -cdf cat-like behavior Replicate gzip -- option to suppress option decoding Test output from make test instead of showing it Updated pigz.spec to install unpigz, pigz.1 [Obermaier] Add PIGZ environment variable [Mueller] Replicate gzip suffix search when decoding or listing Fix bug in load() to set in_left to zero on end of file Do not check suffix when input file won't be modified Decompress to stdout if name is "*cat" [Hayasaka] Write data descriptor signature to be like Info-ZIP Update and sort options list in help Use CC variable for compiler in Makefile Exit with code 2 if a warning has been issued Fix thread synchronization problem when tracing Change macro name MAX to MAX2 to avoid library conflicts Determine number of processors on HP-UX [Lloyd] 2.2 31 Dec 2011 Check for expansion bound busting (e.g. modified zlib) Make the "threads" list head global variable volatile Fix construction and printing of 32-bit check values Add --rsyncable functionality 2.2.1 1 Jan 2012 Fix bug in --rsyncable buffer management 2.2.2 1 Jan 2012 Fix another bug in --rsyncable buffer management 2.2.3 15 Jan 2012 Remove volatile in yarn.c Reduce the number of input buffers Change initial rsyncable hash to comparison value Improve the efficiency of arriving at a byte boundary Add thread portability #defines from yarn.c Have rsyncable compression be independent of threading Fix bug where constructed dictionaries not being used 2.2.4 11 Mar 2012 Avoid some return value warnings Improve the portability of printing the off_t type Check for existence of compress binary before using Update zlib version checking to 1.2.6 for new functions Fix bug in zip (-K) output Fix license in pigz.spec Remove thread portability #defines in pigz.c 2.2.5 28 Jul 2012 Avoid race condition in free_pool() Change suffix to .tar when decompressing or listing .tgz Print name of executable in error messages Show help properly when the name is unpigz or gunzip Fix permissions security problem before output is closed 2.3 3 Mar 2013 Don't complain about missing suffix on stdout Put all global variables in a structure for readability Do not decompress concatenated zlib streams (just gzip) Add option for compression level 11 to use zopfli Fix handling of junk after compressed data 2.3.1 9 Oct 2013 Fix builds of pigzt and pigzn to include zopfli Add -lm, needed to link log function on some systems Respect LDFLAGS in Makefile, use CFLAGS consistently Add memory allocation tracking Fix casting error in uncompressed length calculation Update zopfli to Mar 10, 2013 Google state Support zopfli in single thread case Add -F, -I, -M, and -O options for zopfli tuning 2.3.2 24 Jan 2015 Change whereis to which in Makefile for portability Return zero exit code when only warnings are issued Increase speed of unlzw (Unix compress decompression) Update zopfli to current google state Allow larger maximum blocksize (-b), now 512 MiB Do not require that -d precede -N, -n, -T options Strip any path from header name for -dN or -dNT Remove use of PATH_MAX (PATH_MAX is not reliable) Do not abort on inflate data error, do remaining files Check gzip header CRC if present Improve decompression error detection and reporting 2.3.3 24 Jan 2015 Portability improvements Update copyright years in documentation 2.3.4 1 Oct 2016 Fix an out of bounds access due to invalid LZW input Add an extra sync marker between independent blocks Add zlib version for verbose version option (-vV) Permit named pipes as input (e.g. made by mkfifo()) Fix a bug in -r directory traversal Add warning for a zip file entry 4 GiB or larger 2.4 26 Dec 2017 Portability improvements Produce Zip64 format when needed for --zip (>= 4 GiB) Make -no-name compatible with gzip, add --time option Add -m as a short option for --no-time Check run-time zlib version to handle weak linking Fix a concurrent read bug in --list operation Process options first, for gzip compatibility Add --synchronous (-Y) option to force device write Disallow an empty suffix (e.g. --suffix '') Return an exit code of 1 if any issues are encountered Fix sign error in compression reduction percentage 2.5 23 Jan 2021 Add --alias/-A option to set .zip name for stdin input Add --comment/-C option to add comment in .gz or .zip Fix a bug that misidentified a multi-entry .zip Fix a bug that did not emit double syncs for -i -p 1 Fix a bug in yarn that could try to access freed data Do not delete multi-entry .zip files when extracting Do not reject .zip entries with bit 11 set Avoid a possible threads lock-order inversion Ignore trailing junk after a gzip stream by default 2.6 6 Feb 2021 Add --huffman/-H and --rle/U strategy options Fix issue when compiling for no threads Fail silently on a broken pipe 2.7 15 Jan 2022 Show time stamp only for the first gzip member Show totals when listing more than one gzip member Don't unlink input file if it has other links Add documentation for environment variables Fix bug when combining -l with -d Exit with status of zero if skipping non .gz files Permit Huffman only (-H) when not compiling with zopfli 2.8 19 Aug 2023 Fix version bug when compiling with zlib 1.3 Save a modification time only for regular files Write all available uncompressed data on an error */ #define VERSION "pigz 2.8" /* To-do: - make source portable for Windows, VMS, etc. (see gzip source code) - make build portable (currently good for Unixish) */ /* pigz compresses using threads to make use of multiple processors and cores. The input is broken up into 128 KB chunks with each compressed in parallel. The individual check value for each chunk is also calculated in parallel. The compressed data is written in order to the output, and a combined check value is calculated from the individual check values. The compressed data format generated is in the gzip, zlib, or single-entry zip format using the deflate compression method. The compression produces partial raw deflate streams which are concatenated by a single write thread and wrapped with the appropriate header and trailer, where the trailer contains the combined check value. Each partial raw deflate stream is terminated by an empty stored block (using the Z_SYNC_FLUSH option of zlib), in order to end that partial bit stream at a byte boundary, unless that partial stream happens to already end at a byte boundary (the latter requires zlib 1.2.6 or later). Ending on a byte boundary allows the partial streams to be concatenated simply as sequences of bytes. This adds a very small four to five byte overhead (average 3.75 bytes) to the output for each input chunk. The default input block size is 128K, but can be changed with the -b option. The number of compress threads is set by default to 8, which can be changed using the -p option. Specifying -p 1 avoids the use of threads entirely. pigz will try to determine the number of processors in the machine, in which case if that number is two or greater, pigz will use that as the default for -p instead of 8. The input blocks, while compressed independently, have the last 32K of the previous block loaded as a preset dictionary to preserve the compression effectiveness of deflating in a single thread. This can be turned off using the --independent or -i option, so that the blocks can be decompressed independently for partial error recovery or for random access. Decompression can't be parallelized over an arbitrary number of processors like compression can be, at least not without specially prepared deflate streams for that purpose. As a result, pigz uses a single thread (the main thread) for decompression, but will create three other threads for reading, writing, and check calculation, which can speed up decompression under some circumstances. Parallel decompression can be turned off by specifying one process (-dp 1 or -tp 1). pigz requires zlib 1.2.1 or later to allow setting the dictionary when doing raw deflate. Since zlib 1.2.3 corrects security vulnerabilities in zlib version 1.2.1 and 1.2.2, conditionals check for zlib 1.2.3 or later during the compilation of pigz.c. zlib 1.2.4 includes some improvements to Z_FULL_FLUSH and deflateSetDictionary() that permit identical output for pigz with and without threads, which is not possible with zlib 1.2.3. This may be important for uses of pigz -R where small changes in the contents should result in small changes in the archive for rsync. Note that due to the details of how the lower levels of compression result in greater speed, compression level 3 and below does not permit identical pigz output with and without threads. pigz uses the POSIX pthread library for thread control and communication, through the yarn.h interface to yarn.c. yarn.c can be replaced with equivalent implementations using other thread libraries. pigz can be compiled with NOTHREAD #defined to not use threads at all (in which case pigz will not be able to live up to the "parallel" in its name). */ /* Details of parallel compression implementation: When doing parallel compression, pigz uses the main thread to read the input in 'size' sized chunks (see -b), and puts those in a compression job list, each with a sequence number to keep track of the ordering. If it is not the first chunk, then that job also points to the previous input buffer, from which the last 32K will be used as a dictionary (unless -i is specified). This sets a lower limit of 32K on 'size'. pigz launches up to 'procs' compression threads (see -p). Each compression thread continues to look for jobs in the compression list and perform those jobs until instructed to return. When a job is pulled, the dictionary, if provided, will be loaded into the deflate engine and then that input buffer is dropped for reuse. Then the input data is compressed into an output buffer that grows in size if necessary to hold the compressed data. The job is then put into the write job list, sorted by the sequence number. The compress thread however continues to calculate the check value on the input data, either a CRC-32 or Adler-32, possibly in parallel with the write thread writing the output data. Once that's done, the compress thread drops the input buffer and also releases the lock on the check value so that the write thread can combine it with the previous check values. The compress thread has then completed that job, and goes to look for another. All of the compress threads are left running and waiting even after the last chunk is processed, so that they can support the next input to be compressed (more than one input file on the command line). Once pigz is done, it will call all the compress threads home (that'll do pig, that'll do). Before starting to read the input, the main thread launches the write thread so that it is ready pick up jobs immediately. The compress thread puts the write jobs in the list in sequence sorted order, so that the first job in the list is always has the lowest sequence number. The write thread waits for the next write job in sequence, and then gets that job. The job still holds its input buffer, from which the write thread gets the input buffer length for use in check value combination. Then the write thread drops that input buffer to allow its reuse. Holding on to the input buffer until the write thread starts also has the benefit that the read and compress threads can't get way ahead of the write thread and build up a large backlog of unwritten compressed data. The write thread will write the compressed data, drop the output buffer, and then wait for the check value to be unlocked by the compress thread. Then the write thread combines the check value for this chunk with the total check value for eventual use in the trailer. If this is not the last chunk, the write thread then goes back to look for the next output chunk in sequence. After the last chunk, the write thread returns and joins the main thread. Unlike the compress threads, a new write thread is launched for each input stream. The write thread writes the appropriate header and trailer around the compressed data. The input and output buffers are reused through their collection in pools. Each buffer has a use count, which when decremented to zero returns the buffer to the respective pool. Each input buffer has up to three parallel uses: as the input for compression, as the data for the check value calculation, and as a dictionary for compression. Each output buffer has only one use, which is as the output of compression followed serially as data to be written. The input pool is limited in the number of buffers, so that reading does not get way ahead of compression and eat up memory with more input than can be used. The limit is approximately two times the number of compression threads. In the case that reading is fast as compared to compression, that number allows a second set of buffers to be read while the first set of compressions are being performed. The number of output buffers is not directly limited, but is indirectly limited by the release of input buffers to about the same number. */ // Portability defines. #define _FILE_OFFSET_BITS 64 // Use large file functions #define _LARGE_FILES // Same thing for AIX #define _XOPEN_SOURCE 700 // For POSIX 2008 // Included headers and what is expected from each. #include // fflush(), fprintf(), fputs(), getchar(), putc(), // puts(), printf(), vasprintf(), stderr, EOF, NULL, // SEEK_END, size_t, off_t #include // exit(), malloc(), free(), realloc(), atol(), atoi(), // getenv() #include // va_start(), va_arg(), va_end(), va_list #include // memset(), memchr(), memcpy(), strcmp(), strcpy(), // strncpy(), strlen(), strcat(), strrchr(), // strerror() #include // errno, EEXIST #include // assert() #include // ctime(), time(), time_t, mktime() #include // signal(), SIGINT #include // ssize_t #include // chmod(), stat(), fstat(), lstat(), struct stat, // S_IFDIR, S_IFLNK, S_IFMT, S_IFREG #include // utimes(), gettimeofday(), struct timeval #include // unlink(), _exit(), read(), write(), close(), // lseek(), isatty(), chown(), fsync() #include // open(), O_CREAT, O_EXCL, O_RDONLY, O_TRUNC, // O_WRONLY, fcntl(), F_FULLFSYNC #include // opendir(), readdir(), closedir(), DIR, // struct dirent #include // UINT_MAX, INT_MAX #if __STDC_VERSION__-0 >= 199901L || __GNUC__-0 >= 3 # include // intmax_t, uintmax_t typedef uintmax_t length_t; typedef uint32_t crc_t; typedef uint_least16_t prefix_t; #else typedef unsigned long length_t; typedef unsigned long crc_t; typedef unsigned prefix_t; #endif #ifdef PIGZ_DEBUG # if defined(__APPLE__) # include # define MALLOC_SIZE(p) malloc_size(p) # elif defined (__linux) # include # define MALLOC_SIZE(p) malloc_usable_size(p) # elif defined (_WIN32) || defined(_WIN64) # include # define MALLOC_SIZE(p) _msize(p) # else # define MALLOC_SIZE(p) (0) # endif #endif #ifdef __hpux # include # include #endif #ifndef S_IFLNK # define S_IFLNK 0 #endif #ifdef __MINGW32__ # define chown(p,o,g) 0 # define utimes(p,t) 0 # define lstat(p,s) stat(p,s) # define _exit(s) exit(s) #endif #include "zlib.h" // deflateInit2(), deflateReset(), deflate(), // deflateEnd(), deflateSetDictionary(), crc32(), // adler32(), inflateBackInit(), inflateBack(), // inflateBackEnd(), Z_DEFAULT_COMPRESSION, // Z_DEFAULT_STRATEGY, Z_DEFLATED, Z_NO_FLUSH, Z_NULL, // Z_OK, Z_SYNC_FLUSH, z_stream #if !defined(ZLIB_VERNUM) || ZLIB_VERNUM < 0x1230 # error "Need zlib version 1.2.3 or later" #endif #ifndef NOTHREAD # include "yarn.h" // thread, launch(), join(), join_all(), lock, // new_lock(), possess(), twist(), wait_for(), // release(), peek_lock(), free_lock(), yarn_name #endif #ifndef NOZOPFLI # include "zopfli/src/zopfli/deflate.h" // ZopfliDeflatePart(), // ZopfliInitOptions(), // ZopfliOptions #endif #include "try.h" // try, catch, always, throw, drop, punt, ball_t // For local functions and globals. #define local static // Prevent end-of-line conversions on MSDOSish operating systems. #if defined(MSDOS) || defined(OS2) || defined(_WIN32) || defined(__CYGWIN__) # include // setmode(), O_BINARY, _commit() for _WIN32 # define SET_BINARY_MODE(fd) setmode(fd, O_BINARY) #else # define SET_BINARY_MODE(fd) #endif // Release an allocated pointer, if allocated, and mark as unallocated. #define RELEASE(ptr) \ do { \ if ((ptr) != NULL) { \ FREE(ptr); \ ptr = NULL; \ } \ } while (0) // Sliding dictionary size for deflate. #define DICT 32768U // Largest power of 2 that fits in an unsigned int. Used to limit requests to // zlib functions that use unsigned int lengths. #define MAXP2 (UINT_MAX - (UINT_MAX >> 1)) /* rsyncable constants -- RSYNCBITS is the number of bits in the mask for comparison. For random input data, there will be a hit on average every 1<> 1) // Initial pool counts and sizes -- INBUFS is the limit on the number of input // spaces as a function of the number of processors (used to throttle the // creation of compression jobs), OUTPOOL is the initial size of the output // data buffer, chosen to make resizing of the buffer very unlikely and to // allow prepending with a dictionary for use as an input buffer for zopfli. #define INBUFS(p) (((p)<<1)+3) #define OUTPOOL(s) ((s)+((s)>>4)+DICT) // Input buffer size, and augmentation for re-inserting a central header. #define BUF 32768 #define CEN 42 #define EXT (BUF + CEN) // provide enough room to unget a header // Globals (modified by main thread only when it's the only thread). local struct { int ret; // pigz return code char *prog; // name by which pigz was invoked int ind; // input file descriptor int outd; // output file descriptor char *inf; // input file name (allocated) size_t inz; // input file name allocated size char *outf; // output file name (allocated) int verbosity; // 0 = quiet, 1 = normal, 2 = verbose, 3 = trace int headis; // 1 to store name, 2 to store date, 3 both int pipeout; // write output to stdout even if file int keep; // true to prevent deletion of input file int force; // true to overwrite, compress links, cat int sync; // true to flush output file int form; // gzip = 0, zlib = 1, zip = 2 or 3 int magic1; // first byte of possible header when decoding int recurse; // true to dive down into directory structure char *sufx; // suffix to use (".gz" or user supplied) char *name; // name for gzip or zip header char *alias; // name for zip header when input is stdin char *comment; // comment for gzip or zip header. time_t mtime; // time stamp from input file for gzip header int list; // true to list files instead of compress int first; // true if we need to print listing header int decode; // 0 to compress, 1 to decompress, 2 to test int level; // compression level int strategy; // compression strategy #ifndef NOZOPFLI ZopfliOptions zopts; // zopfli compression options #endif int rsync; // true for rsync blocking int procs; // maximum number of compression threads (>= 1) int setdict; // true to initialize dictionary in each thread size_t block; // uncompressed input size per thread (>= 32K) crc_t shift; // pre-calculated CRC-32 shift for length block // saved gzip/zip header data for decompression, testing, and listing time_t stamp; // time stamp from gzip header char *hname; // name from header (allocated) char *hcomm; // comment from header (allocated) unsigned long zip_crc; // local header crc length_t zip_clen; // local header compressed length length_t zip_ulen; // local header uncompressed length int zip64; // true if has zip64 extended information // globals for decompression and listing buffered reading unsigned char in_buf[EXT]; // input buffer unsigned char *in_next; // next unused byte in buffer size_t in_left; // number of unused bytes in buffer int in_eof; // true if reached end of file on input int in_short; // true if last read didn't fill buffer length_t in_tot; // total bytes read from input length_t out_tot; // total bytes written to output unsigned long out_check; // check value of output #ifndef NOTHREAD // globals for decompression parallel reading unsigned char in_buf2[EXT]; // second buffer for parallel reads size_t in_len; // data waiting in next buffer int in_which; // -1: start, 0: in_buf2, 1: in_buf lock *load_state; // value = 0 to wait, 1 to read a buffer thread *load_thread; // load_read() thread for joining #endif } g; local void message(char *fmt, va_list ap) { if (g.verbosity > 0) { fprintf(stderr, "%s: ", g.prog); vfprintf(stderr, fmt, ap); putc('\n', stderr); fflush(stderr); } } // Display a complaint with the program name on stderr. local int complain(char *fmt, ...) { g.ret = 1; va_list ap; va_start(ap, fmt); message(fmt, ap); va_end(ap); return 0; } // Same as complain(), but don't force a bad return code. local int grumble(char *fmt, ...) { va_list ap; va_start(ap, fmt); message(fmt, ap); va_end(ap); return 0; } #ifdef PIGZ_DEBUG // Memory tracking. #define MAXMEM 131072 // maximum number of tracked pointers local struct mem_track_s { size_t num; // current number of allocations size_t size; // total size of current allocations size_t tot; // maximum number of allocations size_t max; // maximum size of allocations #ifndef NOTHREAD lock *lock; // lock for access across threads #endif size_t have; // number in array (possibly != num) void *mem[MAXMEM]; // sorted array of allocated pointers } mem_track; #ifndef NOTHREAD # define mem_track_grab(m) possess((m)->lock) # define mem_track_drop(m) release((m)->lock) #else # define mem_track_grab(m) # define mem_track_drop(m) #endif // Return the leftmost insert location of ptr in the sorted list mem->mem[], // which currently has mem->have elements. If ptr is already in the list, the // returned value will point to its first occurrence. The return location will // be one after the last element if ptr is greater than all of the elements. local size_t search_track(struct mem_track_s *mem, void *ptr) { ptrdiff_t left = 0; ptrdiff_t right = mem->have - 1; while (left <= right) { ptrdiff_t mid = (left + right) >> 1; if (mem->mem[mid] < ptr) left = mid + 1; else right = mid - 1; } return left; } // Insert ptr in the sorted list mem->mem[] and update the memory allocation // statistics. local void insert_track(struct mem_track_s *mem, void *ptr) { mem_track_grab(mem); assert(mem->have < MAXMEM && "increase MAXMEM in source and try again"); size_t i = search_track(mem, ptr); if (i < mem->have && mem->mem[i] == ptr) complain("mem_track: duplicate pointer %p\n", ptr); memmove(&mem->mem[i + 1], &mem->mem[i], (mem->have - i) * sizeof(void *)); mem->mem[i] = ptr; mem->have++; mem->num++; mem->size += MALLOC_SIZE(ptr); if (mem->num > mem->tot) mem->tot = mem->num; if (mem->size > mem->max) mem->max = mem->size; mem_track_drop(mem); } // Find and delete ptr from the sorted list mem->mem[] and update the memory // allocation statistics. local void delete_track(struct mem_track_s *mem, void *ptr) { mem_track_grab(mem); size_t i = search_track(mem, ptr); if (i < mem->num && mem->mem[i] == ptr) { memmove(&mem->mem[i], &mem->mem[i + 1], (mem->have - (i + 1)) * sizeof(void *)); mem->have--; } else complain("mem_track: missing pointer %p\n", ptr); mem->num--; mem->size -= MALLOC_SIZE(ptr); mem_track_drop(mem); } local void *malloc_track(struct mem_track_s *mem, size_t size) { void *ptr = malloc(size); if (ptr != NULL) insert_track(mem, ptr); return ptr; } local void *realloc_track(struct mem_track_s *mem, void *ptr, size_t size) { if (ptr == NULL) return malloc_track(mem, size); delete_track(mem, ptr); void *got = realloc(ptr, size); insert_track(mem, got == NULL ? ptr : got); return got; } local void free_track(struct mem_track_s *mem, void *ptr) { if (ptr != NULL) { delete_track(mem, ptr); free(ptr); } } #ifndef NOTHREAD local void *yarn_malloc(size_t size) { return malloc_track(&mem_track, size); } local void yarn_free(void *ptr) { free_track(&mem_track, ptr); } #endif local voidpf zlib_alloc(voidpf opaque, uInt items, uInt size) { return malloc_track(opaque, items * (size_t)size); } local void zlib_free(voidpf opaque, voidpf address) { free_track(opaque, address); } #define REALLOC(p, s) realloc_track(&mem_track, p, s) #define FREE(p) free_track(&mem_track, p) #define OPAQUE (&mem_track) #define ZALLOC zlib_alloc #define ZFREE zlib_free #else // !PIGZ_DEBUG #define REALLOC realloc #define FREE free #define OPAQUE Z_NULL #define ZALLOC Z_NULL #define ZFREE Z_NULL #endif // Assured memory allocation. local void *alloc(void *ptr, size_t size) { ptr = REALLOC(ptr, size); if (ptr == NULL) throw(ENOMEM, "not enough memory"); return ptr; } #ifdef PIGZ_DEBUG // Logging. // Starting time of day for tracing. local struct timeval start; // Trace log. local struct log { struct timeval when; // time of entry char *msg; // message struct log *next; // next entry } *log_head, **log_tail = NULL; #ifndef NOTHREAD local lock *log_lock = NULL; #endif // Maximum log entry length. #define MAXMSG 256 // Set up log (call from main thread before other threads launched). local void log_init(void) { if (log_tail == NULL) { mem_track.num = 0; mem_track.size = 0; mem_track.num = 0; mem_track.max = 0; mem_track.have = 0; #ifndef NOTHREAD mem_track.lock = new_lock(0); yarn_mem(yarn_malloc, yarn_free); log_lock = new_lock(0); #endif log_head = NULL; log_tail = &log_head; } } // Add entry to trace log. local void log_add(char *fmt, ...) { struct timeval now; struct log *me; va_list ap; char msg[MAXMSG]; gettimeofday(&now, NULL); me = alloc(NULL, sizeof(struct log)); me->when = now; va_start(ap, fmt); vsnprintf(msg, MAXMSG, fmt, ap); va_end(ap); me->msg = alloc(NULL, strlen(msg) + 1); strcpy(me->msg, msg); me->next = NULL; #ifndef NOTHREAD assert(log_lock != NULL); possess(log_lock); #endif *log_tail = me; log_tail = &(me->next); #ifndef NOTHREAD twist(log_lock, BY, +1); #endif } // Pull entry from trace log and print it, return false if empty. local int log_show(void) { struct log *me; struct timeval diff; if (log_tail == NULL) return 0; #ifndef NOTHREAD possess(log_lock); #endif me = log_head; if (me == NULL) { #ifndef NOTHREAD release(log_lock); #endif return 0; } log_head = me->next; if (me->next == NULL) log_tail = &log_head; #ifndef NOTHREAD twist(log_lock, BY, -1); #endif diff.tv_usec = me->when.tv_usec - start.tv_usec; diff.tv_sec = me->when.tv_sec - start.tv_sec; if (diff.tv_usec < 0) { diff.tv_usec += 1000000L; diff.tv_sec--; } fprintf(stderr, "trace %ld.%06ld %s\n", (long)diff.tv_sec, (long)diff.tv_usec, me->msg); fflush(stderr); FREE(me->msg); FREE(me); return 1; } // Release log resources (need to do log_init() to use again). local void log_free(void) { struct log *me; if (log_tail != NULL) { #ifndef NOTHREAD possess(log_lock); #endif while ((me = log_head) != NULL) { log_head = me->next; FREE(me->msg); FREE(me); } #ifndef NOTHREAD twist(log_lock, TO, 0); free_lock(log_lock); log_lock = NULL; yarn_mem(malloc, free); free_lock(mem_track.lock); #endif log_tail = NULL; } } // Show entries until no more, free log. local void log_dump(void) { if (log_tail == NULL) return; while (log_show()) ; log_free(); if (mem_track.num || mem_track.size) complain("memory leak: %zu allocs of %zu bytes total", mem_track.num, mem_track.size); if (mem_track.max) fprintf(stderr, "%zu bytes of memory used in %zu allocs\n", mem_track.max, mem_track.tot); } // Debugging macro. #define Trace(x) \ do { \ if (g.verbosity > 2) { \ log_add x; \ } \ } while (0) #else // !PIGZ_DEBUG #define log_dump() #define Trace(x) #endif // Abort or catch termination signal. local void cut_short(int sig) { if (sig == SIGINT) { Trace(("termination by user")); } if (g.outd != -1 && g.outd != 1) { unlink(g.outf); RELEASE(g.outf); g.outd = -1; } log_dump(); _exit(sig < 0 ? -sig : EINTR); } // Common code for catch block of top routine in the thread. #define THREADABORT(ball) \ do { \ if ((ball).code != EPIPE) \ complain("abort: %s", (ball).why); \ drop(ball); \ cut_short(-(ball).code); \ } while (0) // Compute next size up by multiplying by about 2**(1/3) and rounding to the // next power of 2 if close (three applications results in doubling). If small, // go up to at least 16, if overflow, go to max size_t value. local inline size_t grow(size_t size) { size_t was, top; int shift; was = size; size += size >> 2; top = size; for (shift = 0; top > 7; shift++) top >>= 1; if (top == 7) size = (size_t)1 << (shift + 3); if (size < 16) size = 16; if (size <= was) size = (size_t)0 - 1; return size; } // Copy cpy[0..len-1] to *mem + off, growing *mem if necessary, where *size is // the allocated size of *mem. Return the number of bytes in the result. local inline size_t vmemcpy(char **mem, size_t *size, size_t off, void *cpy, size_t len) { size_t need; need = off + len; if (need < off) throw(ERANGE, "overflow"); if (need > *size) { need = grow(need); if (off == 0) { RELEASE(*mem); *size = 0; } *mem = alloc(*mem, need); *size = need; } memcpy(*mem + off, cpy, len); return off + len; } // Copy the zero-terminated string cpy to *str + off, growing *str if // necessary, where *size is the allocated size of *str. Return the length of // the string plus one. local inline size_t vstrcpy(char **str, size_t *size, size_t off, void *cpy) { return vmemcpy(str, size, off, cpy, strlen(cpy) + 1); } // Read up to len bytes into buf, repeating read() calls as needed. local size_t readn(int desc, unsigned char *buf, size_t len) { ssize_t ret; size_t got; got = 0; while (len) { ret = read(desc, buf, len); if (ret < 0) throw(errno, "read error on %s (%s)", g.inf, strerror(errno)); if (ret == 0) break; buf += ret; len -= (size_t)ret; got += (size_t)ret; } return got; } // Write len bytes, repeating write() calls as needed. Return len. local size_t writen(int desc, void const *buf, size_t len) { char const *next = buf; size_t left = len; while (left) { size_t const max = SSIZE_MAX; ssize_t ret = write(desc, next, left > max ? max : left); if (ret < 1) throw(errno, "write error on %s (%s)", g.outf, strerror(errno)); next += ret; left -= (size_t)ret; } return len; } // Convert Unix time to MS-DOS date and time, assuming the current timezone. // (You got a better idea?) local unsigned long time2dos(time_t t) { struct tm *tm; unsigned long dos; if (t == 0) t = time(NULL); tm = localtime(&t); if (tm->tm_year < 80 || tm->tm_year > 207) return 0; dos = (unsigned long)(tm->tm_year - 80) << 25; dos += (unsigned long)(tm->tm_mon + 1) << 21; dos += (unsigned long)tm->tm_mday << 16; dos += (unsigned long)tm->tm_hour << 11; dos += (unsigned long)tm->tm_min << 5; dos += (unsigned long)(tm->tm_sec + 1) >> 1; // round to even seconds return dos; } // Value type for put() value arguments. All value arguments for put() must be // cast to this type in order for va_arg() to pull the correct type from the // argument list. typedef length_t val_t; // Write a set of header or trailer values to out, which is a file descriptor. // The values are specified by a series of arguments in pairs, where the first // argument in each pair is the number of bytes, and the second argument in // each pair is the unsigned integer value to write. The first argument in each // pair must be an int, and the second argument in each pair must be a val_t. // The arguments are terminated by a single zero (an int). If the number of // bytes is positive, then the value is written in little-endian order. If the // number of bytes is negative, then the value is written in big-endian order. // The total number of bytes written is returned. This makes the long and // tiresome zip format headers and trailers more readable, maintainable, and // verifiable. local unsigned put(int out, ...) { // compute the total number of bytes unsigned count = 0; int n; va_list ap; va_start(ap, out); while ((n = va_arg(ap, int)) != 0) { va_arg(ap, val_t); count += (unsigned)abs(n); } va_end(ap); // allocate memory for the data unsigned char *wrap = alloc(NULL, count); unsigned char *next = wrap; // write the requested data to wrap[] va_start(ap, out); while ((n = va_arg(ap, int)) != 0) { val_t val = va_arg(ap, val_t); if (n < 0) { // big endian n = -n << 3; do { n -= 8; *next++ = (unsigned char)(val >> n); } while (n); } else // little endian do { *next++ = (unsigned char)val; val >>= 8; } while (--n); } va_end(ap); // write wrap[] to out and return the number of bytes written writen(out, wrap, count); FREE(wrap); return count; } // Low 32-bits set to all ones. #define LOW32 0xffffffff // Write a gzip, zlib, or zip header using the information in the globals. local length_t put_header(void) { length_t len; if (g.form > 1) { // zip // write local header -- we don't know yet whether the lengths will fit // in 32 bits or not, so we have to assume that they might not and put // in a Zip64 extra field so that the data descriptor that appears // after the compressed data is interpreted with 64-bit lengths len = put(g.outd, 4, (val_t)0x04034b50, // local header signature 2, (val_t)45, // version needed to extract (4.5) 2, (val_t)8, // flags: data descriptor follows data 2, (val_t)8, // deflate 4, (val_t)time2dos(g.mtime), 4, (val_t)0, // crc (not here) 4, (val_t)LOW32, // compressed length (not here) 4, (val_t)LOW32, // uncompressed length (not here) 2, (val_t)(strlen(g.name == NULL ? g.alias : g.name)), // name len 2, (val_t)29, // length of extra field (see below) 0); // write file name (use g.alias for stdin) len += writen(g.outd, g.name == NULL ? g.alias : g.name, strlen(g.name == NULL ? g.alias : g.name)); // write Zip64 and extended timestamp extra field blocks (29 bytes) len += put(g.outd, 2, (val_t)0x0001, // Zip64 extended information ID 2, (val_t)16, // number of data bytes in this block 8, (val_t)0, // uncompressed length (not here) 8, (val_t)0, // compressed length (not here) 2, (val_t)0x5455, // extended timestamp ID 2, (val_t)5, // number of data bytes in this block 1, (val_t)1, // flag presence of mod time 4, (val_t)g.mtime, // mod time 0); } else if (g.form) { // zlib if (g.comment != NULL) complain("can't store comment in zlib format -- ignoring"); unsigned head; head = (0x78 << 8) + // deflate, 32K window (g.level >= 9 ? 3 << 6 : g.level == 1 ? 0 << 6: g.level >= 6 || g.level == Z_DEFAULT_COMPRESSION ? 1 << 6 : 2 << 6); // optional compression level clue head += 31 - (head % 31); // make it a multiple of 31 len = put(g.outd, -2, (val_t)head, // zlib format uses big-endian order 0); } else { // gzip len = put(g.outd, 1, (val_t)31, 1, (val_t)139, 1, (val_t)8, // deflate 1, (val_t)((g.name != NULL ? 8 : 0) + (g.comment != NULL ? 16 : 0)), 4, (val_t)g.mtime, 1, (val_t)(g.level >= 9 ? 2 : g.level == 1 ? 4 : 0), 1, (val_t)3, // unix 0); if (g.name != NULL) len += writen(g.outd, g.name, strlen(g.name) + 1); if (g.comment != NULL) len += writen(g.outd, g.comment, strlen(g.comment) + 1); } return len; } // Write a gzip, zlib, or zip trailer. local void put_trailer(length_t ulen, length_t clen, unsigned long check, length_t head) { if (g.form > 1) { // zip // write Zip64 data descriptor, as promised in the local header length_t desc = put(g.outd, 4, (val_t)0x08074b50, 4, (val_t)check, 8, (val_t)clen, 8, (val_t)ulen, 0); // zip64 is true if either the compressed or the uncompressed length // does not fit in 32 bits, in which case there needs to be a Zip64 // extra block in the central directory entry int zip64 = ulen >= LOW32 || clen >= LOW32; // write central file header length_t cent = put(g.outd, 4, (val_t)0x02014b50, // central header signature 1, (val_t)45, // made by 4.5 for Zip64 V1 end record 1, (val_t)255, // ignore external attributes 2, (val_t)45, // version needed to extract (4.5) 2, (val_t)8, // data descriptor is present 2, (val_t)8, // deflate 4, (val_t)time2dos(g.mtime), 4, (val_t)check, // crc 4, (val_t)(zip64 ? LOW32 : clen), // compressed length 4, (val_t)(zip64 ? LOW32 : ulen), // uncompressed length 2, (val_t)(strlen(g.name == NULL ? g.alias : g.name)), // name len 2, (val_t)(zip64 ? 29 : 9), // extra field size (see below) 2, (val_t)(g.comment == NULL ? 0 : strlen(g.comment)), // comment 2, (val_t)0, // disk number 0 2, (val_t)0, // internal file attributes 4, (val_t)0, // external file attributes (ignored) 4, (val_t)0, // offset of local header 0); // write file name (use g.alias for stdin) cent += writen(g.outd, g.name == NULL ? g.alias : g.name, strlen(g.name == NULL ? g.alias : g.name)); // write Zip64 extra field block (20 bytes) if (zip64) cent += put(g.outd, 2, (val_t)0x0001, // Zip64 extended information ID 2, (val_t)16, // number of data bytes in this block 8, (val_t)ulen, // uncompressed length 8, (val_t)clen, // compressed length 0); // write extended timestamp extra field block (9 bytes) cent += put(g.outd, 2, (val_t)0x5455, // extended timestamp signature 2, (val_t)5, // number of data bytes in this block 1, (val_t)1, // flag presence of mod time 4, (val_t)g.mtime, // mod time 0); // write comment, if requested if (g.comment != NULL) cent += writen(g.outd, g.comment, strlen(g.comment)); // here zip64 is true if the offset of the central directory does not // fit in 32 bits, in which case insert the Zip64 end records to // provide a 64-bit offset zip64 = head + clen + desc >= LOW32; if (zip64) { // write Zip64 end of central directory record and locator put(g.outd, 4, (val_t)0x06064b50, // Zip64 end of central dir sig 8, (val_t)44, // size of the remainder of this record 2, (val_t)45, // version made by 2, (val_t)45, // version needed to extract 4, (val_t)0, // number of this disk 4, (val_t)0, // disk with start of central directory 8, (val_t)1, // number of entries on this disk 8, (val_t)1, // total number of entries 8, (val_t)cent, // size of central directory 8, (val_t)(head + clen + desc), // central dir offset 4, (val_t)0x07064b50, // Zip64 end locator signature 4, (val_t)0, // disk with Zip64 end of central dir 8, (val_t)(head + clen + desc + cent), // location 4, (val_t)1, // total number of disks 0); } // write end of central directory record put(g.outd, 4, (val_t)0x06054b50, // end of central directory signature 2, (val_t)0, // number of this disk 2, (val_t)0, // disk with start of central directory 2, (val_t)(zip64 ? 0xffff : 1), // entries on this disk 2, (val_t)(zip64 ? 0xffff : 1), // total number of entries 4, (val_t)(zip64 ? LOW32 : cent), // size of central directory 4, (val_t)(zip64 ? LOW32 : head + clen + desc), // offset 2, (val_t)0, // no zip file comment 0); } else if (g.form) // zlib put(g.outd, -4, (val_t)check, // zlib format uses big-endian order 0); else // gzip put(g.outd, 4, (val_t)check, 4, (val_t)ulen, 0); } // Compute an Adler-32, allowing a size_t length. local unsigned long adler32z(unsigned long adler, unsigned char const *buf, size_t len) { while (len > UINT_MAX && buf != NULL) { adler = adler32(adler, buf, UINT_MAX); buf += UINT_MAX; len -= UINT_MAX; } return adler32(adler, buf, (unsigned)len); } // Compute a CRC-32, allowing a size_t length. local unsigned long crc32z(unsigned long crc, unsigned char const *buf, size_t len) { while (len > UINT_MAX && buf != NULL) { crc = crc32(crc, buf, UINT_MAX); buf += UINT_MAX; len -= UINT_MAX; } return crc32(crc, buf, (unsigned)len); } // Compute check value depending on format. #define CHECK(a,b,c) (g.form == 1 ? adler32z(a,b,c) : crc32z(a,b,c)) // Return the zlib version as an integer, where each component is interpreted // as a decimal number and converted to four hexadecimal digits. E.g. // '1.2.11.1' -> 0x12b1, or return -1 if the string is not a valid version. local long zlib_vernum(void) { char const *ver = zlibVersion(); long num = 0; int left = 4; int comp = 0; do { if (*ver >= '0' && *ver <= '9') comp = 10 * comp + *ver - '0'; else { num = (num << 4) + (comp > 0xf ? 0xf : comp); left--; if (*ver != '.') break; comp = 0; } ver++; } while (left); return left < 3 ? num << (left << 2) : -1; } // -- check value combination routines for parallel calculation -- #define COMB(a,b,c) (g.form == 1 ? adler32_comb(a,b,c) : crc32_comb(a,b,c)) // Combine two crc-32's or two adler-32's (copied from zlib 1.2.3 so that pigz // can be compatible with older versions of zlib). // We copy the combination routines from zlib here, in order to avoid linkage // issues with the zlib 1.2.3 builds on Sun, Ubuntu, and others. // CRC-32 polynomial, reflected. #define POLY 0xedb88320 // Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC // polynomial, reflected. For speed, this requires that a not be zero. local crc_t multmodp(crc_t a, crc_t b) { crc_t m = (crc_t)1 << 31; crc_t p = 0; for (;;) { if (a & m) { p ^= b; if ((a & (m - 1)) == 0) break; } m >>= 1; b = b & 1 ? (b >> 1) ^ POLY : b >> 1; } return p; } // Table of x^2^n modulo p(x). local const crc_t x2n_table[] = { 0x40000000, 0x20000000, 0x08000000, 0x00800000, 0x00008000, 0xedb88320, 0xb1e6b092, 0xa06a2517, 0xed627dae, 0x88d14467, 0xd7bbfe6a, 0xec447f11, 0x8e7ea170, 0x6427800e, 0x4d47bae0, 0x09fe548f, 0x83852d0f, 0x30362f1a, 0x7b5a9cc3, 0x31fec169, 0x9fec022a, 0x6c8dedc4, 0x15d6874d, 0x5fde7a4e, 0xbad90e37, 0x2e4e5eef, 0x4eaba214, 0xa8a472c0, 0x429a969e, 0x148d302a, 0xc40ba6d0, 0xc4e22c3c}; // Return x^(n*2^k) modulo p(x). local crc_t x2nmodp(size_t n, unsigned k) { crc_t p = (crc_t)1 << 31; // x^0 == 1 while (n) { if (n & 1) p = multmodp(x2n_table[k & 31], p); n >>= 1; k++; } return p; } // This uses the pre-computed g.shift value most of the time. Only the last // combination requires a new x2nmodp() calculation. local unsigned long crc32_comb(unsigned long crc1, unsigned long crc2, size_t len2) { return multmodp(len2 == g.block ? g.shift : x2nmodp(len2, 3), crc1) ^ crc2; } #define BASE 65521U // largest prime smaller than 65536 #define LOW16 0xffff // mask lower 16 bits local unsigned long adler32_comb(unsigned long adler1, unsigned long adler2, size_t len2) { unsigned long sum1; unsigned long sum2; unsigned rem; // the derivation of this formula is left as an exercise for the reader rem = (unsigned)(len2 % BASE); sum1 = adler1 & LOW16; sum2 = (rem * sum1) % BASE; sum1 += (adler2 & LOW16) + BASE - 1; sum2 += ((adler1 >> 16) & LOW16) + ((adler2 >> 16) & LOW16) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } #ifndef NOTHREAD // -- threaded portions of pigz -- // -- pool of spaces for buffer management -- // These routines manage a pool of spaces. Each pool specifies a fixed size // buffer to be contained in each space. Each space has a use count, which when // decremented to zero returns the space to the pool. If a space is requested // from the pool and the pool is empty, a space is immediately created unless a // specified limit on the number of spaces has been reached. Only if the limit // is reached will it wait for a space to be returned to the pool. Each space // knows what pool it belongs to, so that it can be returned. // A space (one buffer for each space). struct space { lock *use; // use count -- return to pool when zero unsigned char *buf; // buffer of size size size_t size; // current size of this buffer size_t len; // for application usage (initially zero) struct pool *pool; // pool to return to struct space *next; // for pool linked list }; // Pool of spaces (one pool for each type needed). struct pool { lock *have; // unused spaces available, lock for list struct space *head; // linked list of available buffers size_t size; // size of new buffers in this pool int limit; // number of new spaces allowed, or -1 int made; // number of buffers made }; // Initialize a pool (pool structure itself provided, not allocated). The limit // is the maximum number of spaces in the pool, or -1 to indicate no limit, // i.e., to never wait for a buffer to return to the pool. local void new_pool(struct pool *pool, size_t size, int limit) { pool->have = new_lock(0); pool->head = NULL; pool->size = size; pool->limit = limit; pool->made = 0; } // Get a space from a pool. The use count is initially set to one, so there is // no need to call use_space() for the first use. local struct space *get_space(struct pool *pool) { struct space *space; // if can't create any more, wait for a space to show up possess(pool->have); if (pool->limit == 0) wait_for(pool->have, NOT_TO_BE, 0); // if a space is available, pull it from the list and return it if (pool->head != NULL) { space = pool->head; pool->head = space->next; twist(pool->have, BY, -1); // one less in pool possess(space->use); twist(space->use, TO, 1); // initially one user space->len = 0; return space; } // nothing available, don't want to wait, make a new space assert(pool->limit != 0); if (pool->limit > 0) pool->limit--; pool->made++; release(pool->have); space = alloc(NULL, sizeof(struct space)); space->use = new_lock(1); // initially one user space->buf = alloc(NULL, pool->size); space->size = pool->size; space->len = 0; space->pool = pool; // remember the pool this belongs to return space; } // Increase the size of the buffer in space. local void grow_space(struct space *space) { size_t more; // compute next size up more = grow(space->size); if (more == space->size) throw(ERANGE, "overflow"); // reallocate the buffer space->buf = alloc(space->buf, more); space->size = more; } // Increment the use count to require one more drop before returning this space // to the pool. local void use_space(struct space *space) { long use; possess(space->use); use = peek_lock(space->use); assert(use != 0); twist(space->use, BY, +1); } // Drop a space, returning it to the pool if the use count is zero. local void drop_space(struct space *space) { long use; struct pool *pool; if (space == NULL) return; possess(space->use); use = peek_lock(space->use); assert(use != 0); twist(space->use, BY, -1); if (use == 1) { pool = space->pool; possess(pool->have); space->next = pool->head; pool->head = space; twist(pool->have, BY, +1); } } // Free the memory and lock resources of a pool. Return number of spaces for // debugging and resource usage measurement. local int free_pool(struct pool *pool) { int count; struct space *space; possess(pool->have); count = 0; while ((space = pool->head) != NULL) { pool->head = space->next; FREE(space->buf); free_lock(space->use); FREE(space); count++; } assert(count == pool->made); release(pool->have); free_lock(pool->have); return count; } // Input and output buffer pools. local struct pool in_pool; local struct pool out_pool; local struct pool dict_pool; local struct pool lens_pool; // -- parallel compression -- // Compress or write job (passed from compress list to write list). If seq is // equal to -1, compress_thread is instructed to return; if more is false then // this is the last chunk, which after writing tells write_thread to return. struct job { long seq; // sequence number int more; // true if this is not the last chunk struct space *in; // input data to compress struct space *out; // dictionary or resulting compressed data struct space *lens; // coded list of flush block lengths unsigned long check; // check value for input data lock *calc; // released when check calculation complete struct job *next; // next job in the list (either list) }; // List of compress jobs (with tail for appending to list). local lock *compress_have = NULL; // number of compress jobs waiting local struct job *compress_head, **compress_tail; // List of write jobs. local lock *write_first; // lowest sequence number in list local struct job *write_head; // Number of compression threads running. local int cthreads = 0; // Write thread if running. local thread *writeth = NULL; // Setup job lists (call from main thread). local void setup_jobs(void) { // set up only if not already set up if (compress_have != NULL) return; // allocate locks and initialize lists compress_have = new_lock(0); compress_head = NULL; compress_tail = &compress_head; write_first = new_lock(-1); write_head = NULL; // initialize buffer pools (initial size for out_pool not critical, since // buffers will be grown in size if needed -- the initial size chosen to // make this unlikely, the same for lens_pool) new_pool(&in_pool, g.block, INBUFS(g.procs)); new_pool(&out_pool, OUTPOOL(g.block), -1); new_pool(&dict_pool, DICT, -1); new_pool(&lens_pool, g.block >> (RSYNCBITS - 1), -1); } // Command the compress threads to all return, then join them all (call from // main thread), free all the thread-related resources. local void finish_jobs(void) { struct job job; int caught; // only do this once if (compress_have == NULL) return; // command all of the extant compress threads to return possess(compress_have); job.seq = -1; job.next = NULL; compress_head = &job; compress_tail = &(job.next); twist(compress_have, BY, +1); // will wake them all up // join all of the compress threads, verify they all came back caught = join_all(); Trace(("-- joined %d compress threads", caught)); assert(caught == cthreads); cthreads = 0; // free the resources caught = free_pool(&lens_pool); Trace(("-- freed %d block lengths buffers", caught)); caught = free_pool(&dict_pool); Trace(("-- freed %d dictionary buffers", caught)); caught = free_pool(&out_pool); Trace(("-- freed %d output buffers", caught)); caught = free_pool(&in_pool); Trace(("-- freed %d input buffers", caught)); free_lock(write_first); free_lock(compress_have); compress_have = NULL; } // Compress all strm->avail_in bytes at strm->next_in to out->buf, updating // out->len, grow the size of the buffer (out->size) if necessary. Respect the // size limitations of the zlib stream data types (size_t may be larger than // unsigned). local void deflate_engine(z_stream *strm, struct space *out, int flush) { size_t room; do { room = out->size - out->len; if (room == 0) { grow_space(out); room = out->size - out->len; } strm->next_out = out->buf + out->len; strm->avail_out = room < UINT_MAX ? (unsigned)room : UINT_MAX; (void)deflate(strm, flush); out->len = (size_t)(strm->next_out - out->buf); } while (strm->avail_out == 0); assert(strm->avail_in == 0); } // Get the next compression job from the head of the list, compress and compute // the check value on the input, and put a job in the write list with the // results. Keep looking for more jobs, returning when a job is found with a // sequence number of -1 (leave that job in the list for other incarnations to // find). local void compress_thread(void *dummy) { struct job *job; // job pulled and working on struct job *here, **prior; // pointers for inserting in write list unsigned long check; // check value of input unsigned char *next; // pointer for blocks, check value data size_t left; // input left to process size_t len; // remaining bytes to compress/check #if ZLIB_VERNUM >= 0x1260 int bits; // deflate pending bits #endif int ret; // zlib return code ball_t err; // error information from throw() (void)dummy; try { z_stream strm; // deflate stream #ifndef NOZOPFLI struct space *temp = NULL; // get temporary space for zopfli input if (g.level > 9) temp = get_space(&out_pool); else #endif { // initialize the deflate stream for this thread strm.zfree = ZFREE; strm.zalloc = ZALLOC; strm.opaque = OPAQUE; ret = deflateInit2(&strm, 6, Z_DEFLATED, -15, 8, g.strategy); if (ret == Z_MEM_ERROR) throw(ENOMEM, "not enough memory"); if (ret != Z_OK) throw(EINVAL, "internal error"); } // keep looking for work for (;;) { // get a job (like I tell my son) possess(compress_have); wait_for(compress_have, NOT_TO_BE, 0); job = compress_head; assert(job != NULL); if (job->seq == -1) break; compress_head = job->next; if (job->next == NULL) compress_tail = &compress_head; twist(compress_have, BY, -1); // got a job -- initialize and set the compression level (note that // if deflateParams() is called immediately after deflateReset(), // there is no need to initialize input/output for the stream) Trace(("-- compressing #%ld", job->seq)); #ifndef NOZOPFLI if (g.level <= 9) { #endif (void)deflateReset(&strm); (void)deflateParams(&strm, g.level, g.strategy); #ifndef NOZOPFLI } else temp->len = 0; #endif // set dictionary if provided, release that input or dictionary // buffer (not NULL if g.setdict is true and if this is not the // first work unit) if (job->out != NULL) { len = job->out->len; left = len < DICT ? len : DICT; #ifndef NOZOPFLI if (g.level <= 9) #endif deflateSetDictionary(&strm, job->out->buf + (len - left), (unsigned)left); #ifndef NOZOPFLI else { memcpy(temp->buf, job->out->buf + (len - left), left); temp->len = left; } #endif drop_space(job->out); } // set up input and output job->out = get_space(&out_pool); #ifndef NOZOPFLI if (g.level <= 9) { #endif strm.next_in = job->in->buf; strm.next_out = job->out->buf; #ifndef NOZOPFLI } else memcpy(temp->buf + temp->len, job->in->buf, job->in->len); #endif // compress each block, either flushing or finishing next = job->lens == NULL ? NULL : job->lens->buf; left = job->in->len; job->out->len = 0; do { // decode next block length from blocks list len = next == NULL ? 128 : *next++; if (len < 128) // 64..32831 len = (len << 8) + (*next++) + 64; else if (len == 128) // end of list len = left; else if (len < 192) // 1..63 len &= 0x3f; else if (len < 224){ // 32832..2129983 len = ((len & 0x1f) << 16) + ((size_t)*next++ << 8); len += *next++ + 32832U; } else { // 2129984..539000895 len = ((len & 0x1f) << 24) + ((size_t)*next++ << 16); len += (size_t)*next++ << 8; len += (size_t)*next++ + 2129984UL; } left -= len; #ifndef NOZOPFLI if (g.level <= 9) { #endif // run MAXP2-sized amounts of input through deflate -- this // loop is needed for those cases where the unsigned type // is smaller than the size_t type, or when len is close to // the limit of the size_t type while (len > MAXP2) { strm.avail_in = MAXP2; deflate_engine(&strm, job->out, Z_NO_FLUSH); len -= MAXP2; } // run the last piece through deflate -- end on a byte // boundary, using a sync marker if necessary, or finish // the deflate stream if this is the last block strm.avail_in = (unsigned)len; if (left || job->more) { #if ZLIB_VERNUM >= 0x1260 if (zlib_vernum() >= 0x1260) { deflate_engine(&strm, job->out, Z_BLOCK); // add enough empty blocks to get to a byte // boundary (void)deflatePending(&strm, Z_NULL, &bits); if ((bits & 1) || !g.setdict) deflate_engine(&strm, job->out, Z_SYNC_FLUSH); else if (bits & 7) { do { // add static empty blocks bits = deflatePrime(&strm, 10, 2); assert(bits == Z_OK); (void)deflatePending(&strm, Z_NULL, &bits); } while (bits & 7); deflate_engine(&strm, job->out, Z_BLOCK); } } else #endif { deflate_engine(&strm, job->out, Z_SYNC_FLUSH); } if (!g.setdict) // two markers when independent deflate_engine(&strm, job->out, Z_FULL_FLUSH); } else deflate_engine(&strm, job->out, Z_FINISH); #ifndef NOZOPFLI } else { // compress len bytes using zopfli, end at byte boundary unsigned char bits, *out; size_t outsize; out = NULL; outsize = 0; bits = 0; ZopfliDeflatePart(&g.zopts, 2, !(left || job->more), temp->buf, temp->len, temp->len + len, &bits, &out, &outsize); assert(job->out->len + outsize + 5 <= job->out->size); memcpy(job->out->buf + job->out->len, out, outsize); free(out); job->out->len += outsize; if (left || job->more) { bits &= 7; if ((bits & 1) || !g.setdict) { if (bits == 0 || bits > 5) job->out->buf[job->out->len++] = 0; job->out->buf[job->out->len++] = 0; job->out->buf[job->out->len++] = 0; job->out->buf[job->out->len++] = 0xff; job->out->buf[job->out->len++] = 0xff; } else if (bits) { do { job->out->buf[job->out->len - 1] += 2 << bits; job->out->buf[job->out->len++] = 0; bits += 2; } while (bits < 8); } if (!g.setdict) { // two markers when independent job->out->buf[job->out->len++] = 0; job->out->buf[job->out->len++] = 0; job->out->buf[job->out->len++] = 0; job->out->buf[job->out->len++] = 0xff; job->out->buf[job->out->len++] = 0xff; } } temp->len += len; } #endif } while (left); drop_space(job->lens); job->lens = NULL; Trace(("-- compressed #%ld%s", job->seq, job->more ? "" : " (last)")); // reserve input buffer until check value has been calculated use_space(job->in); // insert write job in list in sorted order, alert write thread possess(write_first); prior = &write_head; while ((here = *prior) != NULL) { if (here->seq > job->seq) break; prior = &(here->next); } job->next = here; *prior = job; twist(write_first, TO, write_head->seq); // calculate the check value in parallel with writing, alert the // write thread that the calculation is complete, and drop this // usage of the input buffer len = job->in->len; next = job->in->buf; check = CHECK(0L, Z_NULL, 0); while (len > MAXP2) { check = CHECK(check, next, MAXP2); len -= MAXP2; next += MAXP2; } check = CHECK(check, next, (unsigned)len); drop_space(job->in); job->check = check; Trace(("-- checked #%ld%s", job->seq, job->more ? "" : " (last)")); possess(job->calc); twist(job->calc, TO, 1); // done with that one -- go find another job } // found job with seq == -1 -- return to join release(compress_have); #ifndef NOZOPFLI if (g.level > 9) drop_space(temp); else #endif { (void)deflateEnd(&strm); } } catch (err) { THREADABORT(err); } } // Collect the write jobs off of the list in sequence order and write out the // compressed data until the last chunk is written. Also write the header and // trailer and combine the individual check values of the input buffers. local void write_thread(void *dummy) { long seq; // next sequence number looking for struct job *job; // job pulled and working on size_t len; // input length int more; // true if more chunks to write length_t head; // header length length_t ulen; // total uncompressed size (overflow ok) length_t clen; // total compressed size (overflow ok) unsigned long check; // check value of uncompressed data ball_t err; // error information from throw() (void)dummy; try { // build and write header Trace(("-- write thread running")); head = put_header(); // process output of compress threads until end of input ulen = clen = 0; check = CHECK(0L, Z_NULL, 0); seq = 0; do { // get next write job in order possess(write_first); wait_for(write_first, TO_BE, seq); job = write_head; write_head = job->next; twist(write_first, TO, write_head == NULL ? -1 : write_head->seq); // update lengths, save uncompressed length for COMB more = job->more; len = job->in->len; drop_space(job->in); ulen += len; clen += job->out->len; // write the compressed data and drop the output buffer Trace(("-- writing #%ld", seq)); writen(g.outd, job->out->buf, job->out->len); drop_space(job->out); Trace(("-- wrote #%ld%s", seq, more ? "" : " (last)")); // wait for check calculation to complete, then combine, once the // compress thread is done with the input, release it possess(job->calc); wait_for(job->calc, TO_BE, 1); release(job->calc); check = COMB(check, job->check, len); Trace(("-- combined #%ld%s", seq, more ? "" : " (last)")); // free the job free_lock(job->calc); FREE(job); // get the next buffer in sequence seq++; } while (more); // write trailer put_trailer(ulen, clen, check, head); // verify no more jobs, prepare for next use possess(compress_have); assert(compress_head == NULL && peek_lock(compress_have) == 0); release(compress_have); possess(write_first); assert(write_head == NULL); twist(write_first, TO, -1); } catch (err) { THREADABORT(err); } } // Encode a hash hit to the block lengths list. hit == 0 ends the list. local void append_len(struct job *job, size_t len) { struct space *lens; assert(len < 539000896UL); if (job->lens == NULL) job->lens = get_space(&lens_pool); lens = job->lens; if (lens->size < lens->len + 3) grow_space(lens); if (len < 64) lens->buf[lens->len++] = (unsigned char)(len + 128); else if (len < 32832U) { len -= 64; lens->buf[lens->len++] = (unsigned char)(len >> 8); lens->buf[lens->len++] = (unsigned char)len; } else if (len < 2129984UL) { len -= 32832U; lens->buf[lens->len++] = (unsigned char)((len >> 16) + 192); lens->buf[lens->len++] = (unsigned char)(len >> 8); lens->buf[lens->len++] = (unsigned char)len; } else { len -= 2129984UL; lens->buf[lens->len++] = (unsigned char)((len >> 24) + 224); lens->buf[lens->len++] = (unsigned char)(len >> 16); lens->buf[lens->len++] = (unsigned char)(len >> 8); lens->buf[lens->len++] = (unsigned char)len; } } // Compress ind to outd, using multiple threads for the compression and check // value calculations and one other thread for writing the output. Compress // threads will be launched and left running (waiting actually) to support // subsequent calls of parallel_compress(). local void parallel_compress(void) { long seq; // sequence number struct space *curr; // input data to compress struct space *next; // input data that follows curr struct space *hold; // input data that follows next struct space *dict; // dictionary for next compression struct job *job; // job for compress, then write int more; // true if more input to read unsigned hash; // hash for rsyncable unsigned char *scan; // next byte to compute hash on unsigned char *end; // after end of data to compute hash on unsigned char *last; // position after last hit size_t left; // last hit in curr to end of curr size_t len; // for various length computations // if first time or after an option change, setup the job lists setup_jobs(); // start write thread writeth = launch(write_thread, NULL); // read from input and start compress threads (write thread will pick up // the output of the compress threads) seq = 0; next = get_space(&in_pool); next->len = readn(g.ind, next->buf, next->size); hold = NULL; dict = NULL; scan = next->buf; hash = RSYNCHIT; left = 0; do { // create a new job job = alloc(NULL, sizeof(struct job)); job->calc = new_lock(0); // update input spaces curr = next; next = hold; hold = NULL; // get more input if we don't already have some if (next == NULL) { next = get_space(&in_pool); next->len = readn(g.ind, next->buf, next->size); } // if rsyncable, generate block lengths and prepare curr for job to // likely have less than size bytes (up to the last hash hit) job->lens = NULL; if (g.rsync && curr->len) { // compute the hash function starting where we last left off to // cover either size bytes or to EOF, whichever is less, through // the data in curr (and in the next loop, through next) -- save // the block lengths resulting from the hash hits in the job->lens // list if (left == 0) { // scan is in curr last = curr->buf; end = curr->buf + curr->len; while (scan < end) { hash = ((hash << 1) ^ *scan++) & RSYNCMASK; if (hash == RSYNCHIT) { len = (size_t)(scan - last); append_len(job, len); last = scan; } } // continue scan in next left = (size_t)(scan - last); scan = next->buf; } // scan in next for enough bytes to fill curr, or what is available // in next, whichever is less (if next isn't full, then we're at // the end of the file) -- the bytes in curr since the last hit, // stored in left, counts towards the size of the first block last = next->buf; len = curr->size - curr->len; if (len > next->len) len = next->len; end = next->buf + len; while (scan < end) { hash = ((hash << 1) ^ *scan++) & RSYNCMASK; if (hash == RSYNCHIT) { len = (size_t)(scan - last) + left; left = 0; append_len(job, len); last = scan; } } append_len(job, 0); // create input in curr for job up to last hit or entire buffer if // no hits at all -- save remainder in next and possibly hold len = (size_t)((job->lens->len == 1 ? scan : last) - next->buf); if (len) { // got hits in next, or no hits in either -- copy to curr memcpy(curr->buf + curr->len, next->buf, len); curr->len += len; memmove(next->buf, next->buf + len, next->len - len); next->len -= len; scan -= len; left = 0; } else if (job->lens->len != 1 && left && next->len) { // had hits in curr, but none in next, and last hit in curr // wasn't right at the end, so we have input there to save -- // use curr up to the last hit, save the rest, moving next to // hold hold = next; next = get_space(&in_pool); memcpy(next->buf, curr->buf + (curr->len - left), left); next->len = left; curr->len -= left; } else { // else, last match happened to be right at the end of curr, or // we're at the end of the input compressing the rest left = 0; } } // compress curr->buf to curr->len -- compress thread will drop curr job->in = curr; // set job->more if there is more to compress after curr more = next->len != 0; job->more = more; // provide dictionary for this job, prepare dictionary for next job job->out = dict; if (more && g.setdict) { if (curr->len >= DICT || job->out == NULL) { dict = curr; use_space(dict); } else { dict = get_space(&dict_pool); len = DICT - curr->len; memcpy(dict->buf, job->out->buf + (job->out->len - len), len); memcpy(dict->buf + len, curr->buf, curr->len); dict->len = DICT; } } // preparation of job is complete job->seq = seq; Trace(("-- read #%ld%s", seq, more ? "" : " (last)")); if (++seq < 1) throw(ERANGE, "overflow"); // start another compress thread if needed if (cthreads < seq && cthreads < g.procs) { (void)launch(compress_thread, NULL); cthreads++; } // put job at end of compress list, let all the compressors know possess(compress_have); job->next = NULL; *compress_tail = job; compress_tail = &(job->next); twist(compress_have, BY, +1); } while (more); drop_space(next); // wait for the write thread to complete (we leave the compress threads out // there and waiting in case there is another stream to compress) join(writeth); writeth = NULL; Trace(("-- write thread joined")); } #endif // Repeated code in single_compress to compress available input and write it. #define DEFLATE_WRITE(flush) \ do { \ do { \ strm->avail_out = out_size; \ strm->next_out = out; \ (void)deflate(strm, flush); \ clen += writen(g.outd, out, out_size - strm->avail_out); \ } while (strm->avail_out == 0); \ assert(strm->avail_in == 0); \ } while (0) // Do a simple compression in a single thread from ind to outd. If reset is // true, instead free the memory that was allocated and retained for input, // output, and deflate. local void single_compress(int reset) { size_t got; // amount of data in in[] size_t more; // amount of data in next[] (0 if eof) size_t start; // start of data in next[] size_t have; // bytes in current block for -i size_t hist; // offset of permitted history int fresh; // if true, reset compression history unsigned hash; // hash for rsyncable unsigned char *scan; // pointer for hash computation size_t left; // bytes left to compress after hash hit unsigned long head; // header length length_t ulen; // total uncompressed size length_t clen; // total compressed size unsigned long check; // check value of uncompressed data static unsigned out_size; // size of output buffer static unsigned char *in, *next, *out; // reused i/o buffers static z_stream *strm = NULL; // reused deflate structure // if requested, just release the allocations and return if (reset) { if (strm != NULL) { (void)deflateEnd(strm); FREE(strm); FREE(out); FREE(next); FREE(in); strm = NULL; } return; } // initialize the deflate structure if this is the first time if (strm == NULL) { int ret; // zlib return code out_size = g.block > MAXP2 ? MAXP2 : (unsigned)g.block; in = alloc(NULL, g.block + DICT); next = alloc(NULL, g.block + DICT); out = alloc(NULL, out_size); strm = alloc(NULL, sizeof(z_stream)); strm->zfree = ZFREE; strm->zalloc = ZALLOC; strm->opaque = OPAQUE; ret = deflateInit2(strm, 6, Z_DEFLATED, -15, 8, g.strategy); if (ret == Z_MEM_ERROR) throw(ENOMEM, "not enough memory"); if (ret != Z_OK) throw(EINVAL, "internal error"); } // write header head = put_header(); // set compression level in case it changed #ifndef NOZOPFLI if (g.level <= 9) { #endif (void)deflateReset(strm); (void)deflateParams(strm, g.level, g.strategy); #ifndef NOZOPFLI } #endif // do raw deflate and calculate check value got = 0; more = readn(g.ind, next, g.block); ulen = more; start = 0; hist = 0; clen = 0; have = 0; check = CHECK(0L, Z_NULL, 0); hash = RSYNCHIT; do { // get data to compress, see if there is any more input if (got == 0) { scan = in; in = next; next = scan; strm->next_in = in + start; got = more; if (g.level > 9) { left = start + more - hist; if (left > DICT) left = DICT; memcpy(next, in + ((start + more) - left), left); start = left; hist = 0; } else start = 0; more = readn(g.ind, next + start, g.block); ulen += more; } // if rsyncable, compute hash until a hit or the end of the block left = 0; if (g.rsync && got) { scan = strm->next_in; left = got; do { if (left == 0) { // went to the end -- if no more or no hit in size bytes, // then proceed to do a flush or finish with got bytes if (more == 0 || got == g.block) break; // fill in[] with what's left there and as much as possible // from next[] -- set up to continue hash hit search if (g.level > 9) { left = (size_t)(strm->next_in - in) - hist; if (left > DICT) left = DICT; } memmove(in, strm->next_in - left, left + got); hist = 0; strm->next_in = in + left; scan = in + left + got; left = more > g.block - got ? g.block - got : more; memcpy(scan, next + start, left); got += left; more -= left; start += left; // if that emptied the next buffer, try to refill it if (more == 0) { more = readn(g.ind, next, g.block); ulen += more; start = 0; } } left--; hash = ((hash << 1) ^ *scan++) & RSYNCMASK; } while (hash != RSYNCHIT); got -= left; } // clear history for --independent option fresh = 0; if (!g.setdict) { have += got; if (have > g.block) { fresh = 1; have = got; } } #ifndef NOZOPFLI if (g.level <= 9) { #endif // clear history if requested if (fresh) (void)deflateReset(strm); // compress MAXP2-size chunks in case unsigned type is small while (got > MAXP2) { strm->avail_in = MAXP2; check = CHECK(check, strm->next_in, strm->avail_in); DEFLATE_WRITE(Z_NO_FLUSH); got -= MAXP2; } // compress the remainder, emit a block, finish if end of input strm->avail_in = (unsigned)got; got = left; check = CHECK(check, strm->next_in, strm->avail_in); if (more || got) { #if ZLIB_VERNUM >= 0x1260 if (zlib_vernum() >= 0x1260) { int bits; DEFLATE_WRITE(Z_BLOCK); (void)deflatePending(strm, Z_NULL, &bits); if ((bits & 1) || !g.setdict) DEFLATE_WRITE(Z_SYNC_FLUSH); else if (bits & 7) { do { bits = deflatePrime(strm, 10, 2); assert(bits == Z_OK); (void)deflatePending(strm, Z_NULL, &bits); } while (bits & 7); DEFLATE_WRITE(Z_NO_FLUSH); } } else DEFLATE_WRITE(Z_SYNC_FLUSH); #else DEFLATE_WRITE(Z_SYNC_FLUSH); #endif if (!g.setdict) // two markers when independent DEFLATE_WRITE(Z_FULL_FLUSH); } else DEFLATE_WRITE(Z_FINISH); #ifndef NOZOPFLI } else { // compress got bytes using zopfli, bring to byte boundary unsigned char bits, *def; size_t size, off; // discard history if requested off = (size_t)(strm->next_in - in); if (fresh) hist = off; def = NULL; size = 0; bits = 0; ZopfliDeflatePart(&g.zopts, 2, !(more || left), in + hist, off - hist, (off - hist) + got, &bits, &def, &size); bits &= 7; if (more || left) { if ((bits & 1) || !g.setdict) { writen(g.outd, def, size); if (bits == 0 || bits > 5) writen(g.outd, (unsigned char *)"\0", 1); writen(g.outd, (unsigned char *)"\0\0\xff\xff", 4); } else { assert(size > 0); writen(g.outd, def, size - 1); if (bits) do { def[size - 1] += 2 << bits; writen(g.outd, def + size - 1, 1); def[size - 1] = 0; bits += 2; } while (bits < 8); writen(g.outd, def + size - 1, 1); } if (!g.setdict) // two markers when independent writen(g.outd, (unsigned char *)"\0\0\0\xff\xff", 5); } else writen(g.outd, def, size); free(def); while (got > MAXP2) { check = CHECK(check, strm->next_in, MAXP2); strm->next_in += MAXP2; got -= MAXP2; } check = CHECK(check, strm->next_in, (unsigned)got); strm->next_in += got; got = left; } #endif // do until no more input } while (more || got); // write trailer put_trailer(ulen, clen, check, head); } // --- decompression --- #ifndef NOTHREAD // Parallel read thread. If the state is 1, then read a buffer and set the // state to 0 when done, if the state is > 1, then end this thread. local void load_read(void *dummy) { size_t len; ball_t err; // error information from throw() (void)dummy; Trace(("-- launched decompress read thread")); try { do { possess(g.load_state); wait_for(g.load_state, NOT_TO_BE, 0); if (peek_lock(g.load_state) > 1) { release(g.load_state); break; } g.in_len = len = readn(g.ind, g.in_which ? g.in_buf : g.in_buf2, BUF); Trace(("-- decompress read thread read %lu bytes", len)); twist(g.load_state, TO, 0); } while (len == BUF); } catch (err) { THREADABORT(err); } Trace(("-- exited decompress read thread")); } // Wait for load_read() to complete the current read operation. If the // load_read() thread is not active, then return immediately. local void load_wait(void) { if (g.in_which == -1) return; possess(g.load_state); wait_for(g.load_state, TO_BE, 0); release(g.load_state); } #endif // load() is called when the input has been consumed in order to provide more // input data: load the input buffer with BUF or fewer bytes (fewer if at end // of file) from the file g.ind, set g.in_next to point to the g.in_left bytes // read, update g.in_tot, and return g.in_left. g.in_eof is set to true when // g.in_left has gone to zero and there is no more data left to read. local size_t load(void) { // if already detected end of file, do nothing if (g.in_short) { g.in_eof = 1; g.in_left = 0; return 0; } #ifndef NOTHREAD // if first time in or procs == 1, read a buffer to have something to // return, otherwise wait for the previous read job to complete if (g.procs > 1) { // if first time, fire up the read thread, ask for a read if (g.in_which == -1) { g.in_which = 1; g.load_state = new_lock(1); g.load_thread = launch(load_read, NULL); } // wait for the previously requested read to complete load_wait(); // set up input buffer with the data just read g.in_next = g.in_which ? g.in_buf : g.in_buf2; g.in_left = g.in_len; // if not at end of file, alert read thread to load next buffer, // alternate between g.in_buf and g.in_buf2 if (g.in_len == BUF) { g.in_which = 1 - g.in_which; possess(g.load_state); twist(g.load_state, TO, 1); } // at end of file -- join read thread (already exited), clean up else { join(g.load_thread); free_lock(g.load_state); g.in_which = -1; } } else #endif { // don't use threads -- simply read a buffer into g.in_buf g.in_left = readn(g.ind, g.in_next = g.in_buf, BUF); } // note end of file if (g.in_left < BUF) { g.in_short = 1; // if we got bupkis, now is the time to mark eof if (g.in_left == 0) g.in_eof = 1; } // update the total and return the available bytes g.in_tot += g.in_left; return g.in_left; } // Terminate the load() operation. Empty buffer, mark end, close file (if not // stdin), and free the name and comment obtained from the header, if present. local void load_end(void) { #ifndef NOTHREAD // if the read thread is running, then end it if (g.in_which != -1) { // wait for the previously requested read to complete and send the // thread a message to exit possess(g.load_state); wait_for(g.load_state, TO_BE, 0); twist(g.load_state, TO, 2); // join the thread (which has exited or will very shortly) and clean up join(g.load_thread); free_lock(g.load_state); g.in_which = -1; } #endif g.in_left = 0; g.in_short = 1; g.in_eof = 1; if (g.ind != 0) close(g.ind); RELEASE(g.hname); RELEASE(g.hcomm); } // Initialize for reading new input. local void in_init(void) { g.in_left = 0; g.in_eof = 0; g.in_short = 0; g.in_tot = 0; #ifndef NOTHREAD g.in_which = -1; #endif } // Buffered reading macros for decompression and listing. #define GET() (g.in_left == 0 && (g.in_eof || load() == 0) ? 0 : \ (g.in_left--, *g.in_next++)) #define GET2() (tmp2 = GET(), tmp2 + ((unsigned)(GET()) << 8)) #define GET4() (tmp4 = GET2(), tmp4 + ((unsigned long)(GET2()) << 16)) #define SKIP(dist) \ do { \ size_t togo = (dist); \ while (togo > g.in_left) { \ togo -= g.in_left; \ if (load() == 0) \ return -3; \ } \ g.in_left -= togo; \ g.in_next += togo; \ } while (0) // GET(), GET2(), GET4() and SKIP() equivalents, with crc update. #define GETC() (g.in_left == 0 && (g.in_eof || load() == 0) ? 0 : \ (g.in_left--, crc = crc32z(crc, g.in_next, 1), *g.in_next++)) #define GET2C() (tmp2 = GETC(), tmp2 + ((unsigned)(GETC()) << 8)) #define GET4C() (tmp4 = GET2C(), tmp4 + ((unsigned long)(GET2C()) << 16)) #define SKIPC(dist) \ do { \ size_t togo = (dist); \ while (togo > g.in_left) { \ crc = crc32z(crc, g.in_next, g.in_left); \ togo -= g.in_left; \ if (load() == 0) \ return -3; \ } \ crc = crc32z(crc, g.in_next, togo); \ g.in_left -= togo; \ g.in_next += togo; \ } while (0) // Get a zero-terminated string into allocated memory, with crc update. #define GETZC(str) \ do { \ unsigned char *end; \ size_t copy, have, size = 0; \ have = 0; \ do { \ if (g.in_left == 0 && load() == 0) \ return -3; \ end = memchr(g.in_next, 0, g.in_left); \ copy = end == NULL ? g.in_left : (size_t)(end - g.in_next) + 1; \ have = vmemcpy(&str, &size, have, g.in_next, copy); \ g.in_left -= copy; \ g.in_next += copy; \ } while (end == NULL); \ crc = crc32z(crc, (unsigned char *)str, have); \ } while (0) // Pull LSB order or MSB order integers from an unsigned char buffer. #define PULL2L(p) ((p)[0] + ((unsigned)((p)[1]) << 8)) #define PULL4L(p) (PULL2L(p) + ((unsigned long)(PULL2L((p) + 2)) << 16)) #define PULL2M(p) (((unsigned)((p)[0]) << 8) + (p)[1]) #define PULL4M(p) (((unsigned long)(PULL2M(p)) << 16) + PULL2M((p) + 2)) // Convert MS-DOS date and time to a Unix time, assuming current timezone. // (You got a better idea?) local time_t dos2time(unsigned long dos) { struct tm tm; if (dos == 0) return time(NULL); tm.tm_year = ((int)(dos >> 25) & 0x7f) + 80; tm.tm_mon = ((int)(dos >> 21) & 0xf) - 1; tm.tm_mday = (int)(dos >> 16) & 0x1f; tm.tm_hour = (int)(dos >> 11) & 0x1f; tm.tm_min = (int)(dos >> 5) & 0x3f; tm.tm_sec = (int)(dos << 1) & 0x3e; tm.tm_isdst = -1; // figure out if DST or not return mktime(&tm); } // Convert an unsigned 32-bit integer to signed, even if long > 32 bits. local long tolong(unsigned long val) { return (long)(val & 0x7fffffffUL) - (long)(val & 0x80000000UL); } // Process zip extra field to extract zip64 lengths and Unix mod time. local int read_extra(unsigned len, int save) { unsigned id, size, tmp2; unsigned long tmp4; // process extra blocks while (len >= 4) { id = GET2(); size = GET2(); if (g.in_eof) return -1; len -= 4; if (size > len) break; len -= size; if (id == 0x0001) { // Zip64 Extended Information Extra Field g.zip64 = 1; if (g.zip_ulen == LOW32 && size >= 8) { g.zip_ulen = GET4(); SKIP(4); size -= 8; } if (g.zip_clen == LOW32 && size >= 8) { g.zip_clen = GET4(); SKIP(4); size -= 8; } } if (save) { if ((id == 0x000d || id == 0x5855) && size >= 8) { // PKWare Unix or Info-ZIP Type 1 Unix block SKIP(4); g.stamp = tolong(GET4()); size -= 8; } if (id == 0x5455 && size >= 5) { // Extended Timestamp block size--; if (GET() & 1) { g.stamp = tolong(GET4()); size -= 4; } } } SKIP(size); } SKIP(len); return 0; } // Read a gzip, zip, zlib, or Unix compress header from ind and return the // compression method in the range 0..257. 8 is deflate, 256 is a zip method // greater than 255, and 257 is LZW (compress). The only methods decompressed // by pigz are 8 and 257. On error, return negative: -1 is immediate EOF, -2 is // not a recognized compressed format (considering only the first two bytes of // input), -3 is premature EOF within the header, -4 is unexpected header flag // values, -5 is the zip central directory, and -6 is a failed gzip header crc // check. If -2 is returned, the input pointer has been reset to the beginning. // If the return value is not negative, then get_header() sets g.form to // indicate gzip (0), zlib (1), or zip (2, or 3 if the entry is followed by a // data descriptor), and the input points to the first byte of compressed data. local int get_header(int save) { unsigned magic; // magic header unsigned method; // compression method unsigned flags; // header flags unsigned fname, extra; // name and extra field lengths unsigned tmp2; // for macro unsigned long tmp4; // for macro unsigned long crc; // gzip header crc // clear return information if (save) { g.stamp = 0; RELEASE(g.hname); RELEASE(g.hcomm); } // see if it's a gzip, zlib, or lzw file g.magic1 = GET(); if (g.in_eof) { g.magic1 = -1; return -1; } magic = (unsigned)g.magic1 << 8; magic += GET(); if (g.in_eof) return -2; if (magic % 31 == 0 && (magic & 0x8f20) == 0x0800) { // it's zlib g.form = 1; return 8; } if (magic == 0x1f9d) { // it's lzw g.form = -1; return 257; } if (magic == 0x504b) { // it's zip magic = GET2(); // the rest of the signature if (g.in_eof) return -3; if (magic == 0x0201 || magic == 0x0806) return -5; // central header or archive extra if (magic != 0x0403) return -4; // not a local header g.zip64 = 0; SKIP(2); flags = GET2(); if (flags & 0xf7f0) return -4; method = GET(); // return low byte of method or 256 if (GET() != 0 || flags & 1) method = 256; // unknown or encrypted if (save) g.stamp = dos2time(GET4()); else SKIP(4); g.zip_crc = GET4(); g.zip_clen = GET4(); g.zip_ulen = GET4(); fname = GET2(); extra = GET2(); if (save) { char *next; if (g.in_eof) return -3; next = g.hname = alloc(NULL, fname + 1); while (fname > g.in_left) { memcpy(next, g.in_next, g.in_left); fname -= g.in_left; next += g.in_left; if (load() == 0) return -3; } memcpy(next, g.in_next, fname); g.in_left -= fname; g.in_next += fname; next += fname; *next = 0; } else SKIP(fname); read_extra(extra, save); g.form = 2 + ((flags & 8) >> 3); return g.in_eof ? -3 : (int)method; } if (magic != 0x1f8b) { // not gzip g.in_left++; // return the second byte g.in_next--; return -2; } // it's gzip -- get method and flags crc = 0xf6e946c9; // crc of 0x1f 0x8b method = GETC(); flags = GETC(); if (flags & 0xe0) return -4; // get time stamp if (save) g.stamp = tolong(GET4C()); else SKIPC(4); // skip extra field and OS SKIPC(2); // skip extra field, if present if (flags & 4) SKIPC(GET2C()); // read file name, if present, into allocated memory if (flags & 8) { if (save) GETZC(g.hname); else while (GETC() != 0) ; } // read comment, if present, into allocated memory if (flags & 16) { if (save) GETZC(g.hcomm); else while (GETC() != 0) ; } // check header crc if ((flags & 2) && GET2() != (crc & 0xffff)) return -6; // return gzip compression method g.form = 0; return g.in_eof ? -3 : (int)method; } // Process the remainder of a zip file after the first entry. Return true if // the next signature is another local file header. If listing verbosely, then // search the remainder of the zip file for the central file header // corresponding to the first zip entry, and save the file comment, if any. local int more_zip_entries(void) { unsigned long sig; int ret, n; unsigned char *first; unsigned tmp2; // for macro unsigned long tmp4; // for macro unsigned char const central[] = {0x50, 0x4b, 1, 2}; sig = GET4(); ret = !g.in_eof && sig == 0x04034b50; // true if another entry follows if (!g.list || g.verbosity < 2) return ret; // if it was a central file header signature, then already four bytes // into a central directory header -- otherwise search for the next one n = sig == 0x02014b50 ? 4 : 0; // number of bytes into central header for (;;) { // assure that more input is available if (g.in_left == 0 && load() == 0) // never found it! return ret; if (n == 0) { // look for first byte in central signature first = memchr(g.in_next, central[0], g.in_left); if (first == NULL) { // not found -- go get the next buffer and keep looking g.in_left = 0; } else { // found -- continue search at next byte n++; g.in_left -= first - g.in_next + 1; g.in_next = first + 1; } } else if (n < 4) { // look for the remaining bytes in the central signature if (g.in_next[0] == central[n]) { n++; g.in_next++; g.in_left--; } else n = 0; // mismatch -- restart search with this byte } else { // Now in a suspected central file header, just past the signature. // Read the rest of the fixed-length portion of the header. unsigned char head[CEN]; size_t need = CEN, part = 0, len, i; if (need > g.in_left) { // will only need to do this once part = g.in_left; memcpy(head + CEN - need, g.in_next, part); need -= part; g.in_left = 0; if (load() == 0) // never found it! return ret; } memcpy(head + CEN - need, g.in_next, need); // Determine to sufficient probability that this is the droid we're // looking for, by checking the CRC and the local header offset. if (PULL4L(head + 12) == g.out_check && PULL4L(head + 38) == 0) { // Update the number of bytes consumed from the current buffer. g.in_next += need; g.in_left -= need; // Get the comment length. len = PULL2L(head + 28); if (len == 0) // no comment return ret; // Skip the file name and extra field. SKIP(PULL2L(head + 24) + (unsigned long)PULL2L(head + 26)); // Save the comment field. need = len; g.hcomm = alloc(NULL, len + 1); while (need > g.in_left) { memcpy(g.hcomm + len - need, g.in_next, g.in_left); need -= g.in_left; g.in_left = 0; if (load() == 0) { // premature EOF RELEASE(g.hcomm); return ret; } } memcpy(g.hcomm + len - need, g.in_next, need); g.in_next += need; g.in_left -= need; for (i = 0; i < len; i++) if (g.hcomm[i] == 0) g.hcomm[i] = ' '; g.hcomm[len] = 0; return ret; } else { // Nope, false alarm. Restart the search at the first byte // after what we thought was the central file header signature. if (part) { // Move buffer data up and insert the part of the header // data read from the previous buffer. memmove(g.in_next + part, g.in_next, g.in_left); memcpy(g.in_next, head, part); g.in_left += part; } n = 0; } } } } // --- list contents of compressed input (gzip, zlib, or lzw) --- // Find standard compressed file suffix, return length of suffix. local size_t compressed_suffix(char *nm) { size_t len; len = strlen(nm); if (len > 4) { nm += len - 4; len = 4; if (strcmp(nm, ".zip") == 0 || strcmp(nm, ".ZIP") == 0 || strcmp(nm, ".tgz") == 0) return 4; } if (len > 3) { nm += len - 3; len = 3; if (strcmp(nm, ".gz") == 0 || strcmp(nm, "-gz") == 0 || strcmp(nm, ".zz") == 0 || strcmp(nm, "-zz") == 0) return 3; } if (len > 2) { nm += len - 2; if (strcmp(nm, ".z") == 0 || strcmp(nm, "-z") == 0 || strcmp(nm, "_z") == 0 || strcmp(nm, ".Z") == 0) return 2; } return 0; } // Listing file name lengths for -l and -lv. #define NAMEMAX1 48 // name display limit at verbosity 1 #define NAMEMAX2 16 // name display limit at verbosity 2 // Print gzip, lzw, zlib, or zip file information. local void show_info(int method, unsigned long check, length_t len, int cont) { size_t max; // maximum name length for current verbosity size_t n; // name length without suffix time_t now; // for getting current year char mod[26]; // modification time in text char tag[NAMEMAX1+1]; // header or file name, possibly truncated // create abbreviated name from header file name or actual file name max = g.verbosity > 1 ? NAMEMAX2 : NAMEMAX1; memset(tag, 0, max + 1); if (cont) strncpy(tag, "<...>", max + 1); else if (g.hname == NULL) { n = strlen(g.inf) - compressed_suffix(g.inf); memcpy(tag, g.inf, n > max + 1 ? max + 1 : n); if (strcmp(g.inf + n, ".tgz") == 0 && n < max + 1) strncpy(tag + n, ".tar", max + 1 - n); } else strncpy(tag, g.hname, max + 1); if (tag[max]) strcpy(tag + max - 3, "..."); // convert time stamp to text if (g.stamp && !cont) { strcpy(mod, ctime(&g.stamp)); now = time(NULL); if (strcmp(mod + 20, ctime(&now) + 20) != 0) strcpy(mod + 11, mod + 19); } else strcpy(mod + 4, "------ -----"); mod[16] = 0; // if first time, print header if (g.first) { if (g.verbosity > 1) fputs("method check timestamp ", stdout); if (g.verbosity > 0) puts("compressed original reduced name"); g.first = 0; } // print information if (g.verbosity > 1) { if (g.form == 3 && !g.decode) printf("zip%3d -------- %s ", method, mod + 4); else if (g.form > 1) printf("zip%3d %08lx %s ", method, check, mod + 4); else if (g.form == 1) printf("zlib%2d %08lx %s ", method, check, mod + 4); else if (method == 257) printf("lzw -------- %s ", mod + 4); else printf("gzip%2d %08lx %s ", method, check, mod + 4); } if (g.verbosity > 0) { // compute reduction percent -- allow divide-by-zero, displays as -inf% double red = 100. * (len - (double)g.in_tot) / len; if ((g.form == 3 && !g.decode) || (method == 8 && g.in_tot > (len + (len >> 10) + 12)) || (method == 257 && g.in_tot > len + (len >> 1) + 3)) #if __STDC_VERSION__-0 >= 199901L || __GNUC__-0 >= 3 printf("%10ju %10ju? unk %s\n", g.in_tot, len, tag); else printf("%10ju %10ju %6.1f%% %s\n", g.in_tot, len, red, tag); #else printf("%10lu %10lu? unk %s\n", g.in_tot, len, tag); else printf("%10lu %10lu %6.1f%% %s\n", g.in_tot, len, red, tag); #endif } if (g.verbosity > 1 && g.hcomm != NULL) puts(g.hcomm); } // List content information about the gzip file at ind (only works if the gzip // file contains a single gzip stream with no junk at the end, and only works // well if the uncompressed length is less than 4 GB). local void list_info(void) { int method; // get_header() return value size_t n; // available trailer bytes off_t at; // used to calculate compressed length unsigned char tail[8]; // trailer containing check and length unsigned long check; // check value length_t len; // length from trailer // initialize input buffer in_init(); // read header information and position input after header method = get_header(1); if (method < 0) { complain(method == -6 ? "skipping: %s corrupt: header crc error" : method == -1 ? "skipping: %s empty" : "skipping: %s unrecognized format", g.inf); return; } #ifndef NOTHREAD // wait for read thread to complete current read() operation, to permit // seeking and reading on g.ind here in the main thread load_wait(); #endif // list zip file if (g.form > 1) { more_zip_entries(); // get first entry comment, if any g.in_tot = g.zip_clen; show_info(method, g.zip_crc, g.zip_ulen, 0); return; } // list zlib file if (g.form == 1) { at = lseek(g.ind, 0, SEEK_END); if (at == -1) { check = 0; do { len = g.in_left < 4 ? g.in_left : 4; g.in_next += g.in_left - len; while (len--) check = (check << 8) + *g.in_next++; } while (load() != 0); check &= LOW32; } else { g.in_tot = (length_t)at; lseek(g.ind, -4, SEEK_END); readn(g.ind, tail, 4); check = PULL4M(tail); } g.in_tot -= 6; show_info(method, check, 0, 0); return; } // list lzw file if (method == 257) { at = lseek(g.ind, 0, SEEK_END); if (at == -1) while (load() != 0) ; else g.in_tot = (length_t)at; g.in_tot -= 3; show_info(method, 0, 0, 0); return; } // skip to end to get trailer (8 bytes), compute compressed length if (g.in_short) { // whole thing already read if (g.in_left < 8) { complain("skipping: %s not a valid gzip file", g.inf); return; } g.in_tot = g.in_left - 8; // compressed size memcpy(tail, g.in_next + (g.in_left - 8), 8); } else if ((at = lseek(g.ind, -8, SEEK_END)) != -1) { g.in_tot = (length_t)at - g.in_tot + g.in_left; // compressed size readn(g.ind, tail, 8); // get trailer } else { // can't seek len = g.in_tot - g.in_left; // save header size do { n = g.in_left < 8 ? g.in_left : 8; memcpy(tail, g.in_next + (g.in_left - n), n); load(); } while (g.in_left == BUF); // read until end if (g.in_left < 8) { if (n + g.in_left < 8) { complain("skipping: %s not a valid gzip file", g.inf); return; } if (g.in_left) { if (n + g.in_left > 8) memcpy(tail, tail + n - (8 - g.in_left), 8 - g.in_left); memcpy(tail + 8 - g.in_left, g.in_next, g.in_left); } } else memcpy(tail, g.in_next + (g.in_left - 8), 8); g.in_tot -= len + 8; } if (g.in_tot < 2) { complain("skipping: %s not a valid gzip file", g.inf); return; } // convert trailer to check and uncompressed length (modulo 2^32) check = PULL4L(tail); len = PULL4L(tail + 4); // list information about contents show_info(method, check, len, 0); } // --- copy input to output (when acting like cat) --- local void cat(void) { // copy the first header byte read, if any if (g.magic1 != -1) { unsigned char buf[1] = {g.magic1}; g.out_tot += writen(g.outd, buf, 1); } // copy the remainder of the input to the output while (g.in_left) { g.out_tot += writen(g.outd, g.in_next, g.in_left); g.in_left = 0; load(); } } // --- decompress deflate input --- // Call-back input function for inflateBack(). local unsigned inb(void *desc, unsigned char **buf) { (void)desc; if (g.in_left == 0) load(); *buf = g.in_next; unsigned len = g.in_left > UINT_MAX ? UINT_MAX : (unsigned)g.in_left; g.in_next += len; g.in_left -= len; return len; } // Output buffers and window for infchk() and unlzw(). #define OUTSIZE 32768U // must be at least 32K for inflateBack() window local unsigned char out_buf[OUTSIZE]; #ifndef NOTHREAD // Output data for parallel write and check. local unsigned char out_copy[OUTSIZE]; local size_t out_len; // outb threads states. local lock *outb_write_more = NULL; local lock *outb_check_more; // Output write thread. local void outb_write(void *dummy) { size_t len; ball_t err; // error information from throw() (void)dummy; Trace(("-- launched decompress write thread")); try { do { possess(outb_write_more); wait_for(outb_write_more, TO_BE, 1); len = out_len; if (len && g.decode == 1) writen(g.outd, out_copy, len); Trace(("-- decompress wrote %lu bytes", len)); twist(outb_write_more, TO, 0); } while (len); } catch (err) { THREADABORT(err); } Trace(("-- exited decompress write thread")); } // Output check thread. local void outb_check(void *dummy) { size_t len; ball_t err; // error information from throw() (void)dummy; Trace(("-- launched decompress check thread")); try { do { possess(outb_check_more); wait_for(outb_check_more, TO_BE, 1); len = out_len; g.out_check = CHECK(g.out_check, out_copy, len); Trace(("-- decompress checked %lu bytes", len)); twist(outb_check_more, TO, 0); } while (len); } catch (err) { THREADABORT(err); } Trace(("-- exited decompress check thread")); } #endif // Call-back output function for inflateBack(). Wait for the last write and // check calculation to complete, copy the write buffer, and then alert the // write and check threads and return for more decompression while that's going // on (or just write and check if no threads or if proc == 1). local int outb(void *desc, unsigned char *buf, unsigned len) { (void)desc; #ifndef NOTHREAD static thread *wr, *ch; if (g.procs > 1) { // if first time, initialize state and launch threads if (outb_write_more == NULL) { outb_write_more = new_lock(0); outb_check_more = new_lock(0); wr = launch(outb_write, NULL); ch = launch(outb_check, NULL); } // wait for previous write and check threads to complete possess(outb_check_more); wait_for(outb_check_more, TO_BE, 0); possess(outb_write_more); wait_for(outb_write_more, TO_BE, 0); // copy the output and alert the worker bees out_len = len; if (len) { g.out_tot += len; memcpy(out_copy, buf, len); } twist(outb_write_more, TO, 1); twist(outb_check_more, TO, 1); // if requested with len == 0, clean up -- terminate and join write and // check threads, free lock if (len == 0 && outb_write_more != NULL) { join(ch); join(wr); free_lock(outb_check_more); free_lock(outb_write_more); outb_write_more = NULL; } // return for more decompression while last buffer is being written and // having its check value calculated -- we wait for those to finish the // next time this function is called return 0; } #endif // if just one process or no threads, then do it without threads if (len) { if (g.decode == 1) writen(g.outd, buf, len); g.out_check = CHECK(g.out_check, buf, len); g.out_tot += len; } return 0; } // Zip file data descriptor signature. This signature may or may not precede // the CRC and lengths, with either resulting in a valid zip file! There is // some odd code below that tries to detect and accommodate both cases. #define SIG 0x08074b50 // Inflate for decompression or testing. Decompress from ind to outd unless // decode != 1, in which case just test ind, and then also list if list != 0; // look for and decode multiple, concatenated gzip and/or zlib streams; read // and check the gzip, zlib, or zip trailer. local void infchk(void) { int ret, cont, more; unsigned long check, len, ktot; z_stream strm; unsigned tmp2; unsigned long tmp4; length_t clen, ctot, utot; ctot = utot = 0; ktot = CHECK(0L, Z_NULL, 0); cont = more = 0; do { // header already read -- set up for decompression g.in_tot = g.in_left; // track compressed data length g.out_tot = 0; g.out_check = CHECK(0L, Z_NULL, 0); strm.zalloc = ZALLOC; strm.zfree = ZFREE; strm.opaque = OPAQUE; ret = inflateBackInit(&strm, 15, out_buf); if (ret == Z_MEM_ERROR) throw(ENOMEM, "not enough memory"); if (ret != Z_OK) throw(EINVAL, "internal error"); // decompress, compute lengths and check value strm.avail_in = 0; strm.next_in = Z_NULL; ret = inflateBack(&strm, inb, NULL, outb, NULL); inflateBackEnd(&strm); g.in_left += strm.avail_in; g.in_next = strm.next_in; outb(NULL, NULL, 0); // finish off final write and check if (ret == Z_DATA_ERROR) throw(EDOM, "%s: corrupted -- invalid deflate data (%s)", g.inf, strm.msg); if (ret == Z_BUF_ERROR) throw(EDOM, "%s: corrupted -- incomplete deflate data", g.inf); if (ret != Z_STREAM_END) throw(EINVAL, "internal error"); // compute compressed data length clen = g.in_tot - g.in_left; // read and check trailer if (g.form > 1) { // zip local trailer (if any) if (g.form == 3) { // data descriptor follows // get data descriptor values, assuming no signature g.zip_crc = GET4(); g.zip_clen = GET4(); g.zip_ulen = GET4(); // ZIP64 -> high clen, not ulen // deduce whether or not a signature precedes the values if (g.zip_crc == SIG && // might be the signature // if the expected CRC is not SIG, then it's a signature (g.out_check != SIG || // assume signature // now we're in a very rare case where CRC == SIG -- the // first four bytes could be the signature or the CRC (g.zip_clen == SIG && // if not, then no signature // now we have the first two words are SIG and the // expected CRC is SIG, so it could be a signature and // the CRC, or it could be the CRC and a compressed // length that is *also* SIG (!) -- so check the low 32 // bits of the expected compressed length for SIG ((clen & LOW32) != SIG || // assume signature and CRC // now the expected CRC *and* the expected low 32 bits // of the compressed length are SIG -- this is so // incredibly unlikely, clearly someone is messing with // us, but we continue ... if the next four bytes are // not SIG, then there is not a signature -- check those // bytes, currently in g.zip_ulen: (g.zip_ulen == SIG && // if not, then no signature // we have three SIGs in a row in the descriptor, and // both the expected CRC and the expected clen are SIG // -- the first one is a signature if we don't expect // the third word to be SIG, which is either the low 32 // bits of ulen, or if ZIP64, the high 32 bits of clen: (g.zip64 ? clen >> 32 : g.out_tot) != SIG // if that last compare was equal, then the expected // values for the CRC, the low 32 bits of clen, *and* // the low 32 bits of ulen are all SIG (!!), or in the // case of ZIP64, even crazier, the CRC and *both* // 32-bit halves of clen are all SIG (clen > 500 // petabytes!!!) ... we can no longer discriminate the // hypotheses, so we will assume no signature ))))) { // first four bytes were actually the descriptor -- shift // the values down and get another four bytes g.zip_crc = g.zip_clen; g.zip_clen = g.zip_ulen; g.zip_ulen = GET4(); } // if ZIP64, then ulen is really the high word of clen -- get // the actual ulen and skip its high word as well (we only // compare the low 32 bits of the lengths to verify) if (g.zip64) { g.zip_ulen = GET4(); (void)GET4(); } if (g.in_eof) throw(EDOM, "%s: corrupted entry -- missing trailer", g.inf); } check = g.zip_crc; if (check != g.out_check) throw(EDOM, "%s: corrupted entry -- crc32 mismatch", g.inf); if (g.zip_clen != (clen & LOW32) || g.zip_ulen != (g.out_tot & LOW32)) throw(EDOM, "%s: corrupted entry -- length mismatch", g.inf); more = more_zip_entries(); // see if more entries, get comment } else if (g.form == 1) { // zlib (big-endian) trailer check = (unsigned long)(GET()) << 24; check += (unsigned long)(GET()) << 16; check += (unsigned)(GET()) << 8; check += GET(); if (g.in_eof) throw(EDOM, "%s: corrupted -- missing trailer", g.inf); if (check != g.out_check) throw(EDOM, "%s: corrupted -- adler32 mismatch", g.inf); } else { // gzip trailer check = GET4(); len = GET4(); if (g.in_eof) throw(EDOM, "%s: corrupted -- missing trailer", g.inf); if (check != g.out_check) throw(EDOM, "%s: corrupted -- crc32 mismatch", g.inf); if (len != (g.out_tot & LOW32)) throw(EDOM, "%s: corrupted -- length mismatch", g.inf); } // show file information if requested if (g.list) { ctot += clen; utot += g.out_tot; ktot = COMB(ktot, check, g.out_tot); g.in_tot = clen; show_info(8, check, g.out_tot, cont); cont = cont ? 2 : 1; } // if a gzip entry follows a gzip entry, decompress it (don't replace // saved header information from first entry) } while (g.form == 0 && (ret = get_header(0)) == 8); // show totals if more than one gzip member if (cont > 1 && g.verbosity > 0) { if (g.verbosity > 1) printf(" %08lx ", ktot); printf( #if __STDC_VERSION__-0 >= 199901L || __GNUC__-0 >= 3 "%10ju %10ju %6.1f%% (total)\n", #else "%10lu %10lu %6.1f%% (total)\n", #endif ctot, utot, 100. * (utot - (double)ctot) / utot); } // gzip -cdf copies junk after gzip stream directly to output if (g.form == 0 && ret == -2 && g.force && g.pipeout && g.decode != 2 && !g.list) cat(); // check for more entries in zip file else if (more) { complain("warning: %s: entries after the first were ignored", g.inf); g.keep = 1; // don't delete the .zip file } // check for non-gzip after gzip stream, or anything after zlib stream else if ((g.verbosity > 1 && g.form == 0 && ret != -1) || (g.form == 1 && (GET(), !g.in_eof))) complain("warning: %s: trailing junk was ignored", g.inf); } // --- decompress Unix compress (LZW) input --- // Type for accumulating bits. 23 bits will be used to accumulate up to 16-bit // symbols. typedef unsigned long bits_t; #define NOMORE() (g.in_left == 0 && (g.in_eof || load() == 0)) #define NEXT() (g.in_left--, (unsigned)*g.in_next++) // Decompress a compress (LZW) file from ind to outd. The compress magic header // (two bytes) has already been read and verified. local void unlzw(void) { unsigned bits; // current bits per code (9..16) unsigned mask; // mask for current bits codes = (1< 16) throw(EDOM, "%s: lzw bits out of range", g.inf); if (max == 9) // 9 doesn't really mean 9 max = 10; flags &= 0x80; // true if block compress // mark the start of the compressed data for computing the first flush mark = g.in_tot - g.in_left; // clear table, start at nine bits per symbol bits = 9; mask = 0x1ff; end = flags ? 256 : 255; // set up: get first 9-bit code, which is the first decompressed byte, but // don't create a table entry until the next code if (NOMORE()) // no compressed data is ok return; buf = NEXT(); if (NOMORE()) throw(EDOM, "%s: lzw premature end", g.inf); // need nine bits buf += NEXT() << 8; final = prev = buf & mask; // code buf >>= bits; left = 16 - bits; if (prev > 255) throw(EDOM, "%s: invalid lzw code", g.inf); out_buf[0] = (unsigned char)final; // write first decompressed byte outcnt = 1; // decode codes stack = 0; for (;;) { // if the table will be full after this, increment the code size if (end >= mask && bits < max) { // flush unused input bits and bytes to next 8*bits bit boundary // (this is a vestigial aspect of the compressed data format // derived from an implementation that made use of a special VAX // machine instruction!) { unsigned rem = ((g.in_tot - g.in_left) - mark) % bits; if (rem) { rem = bits - rem; if (NOMORE()) break; // end of compressed data while (rem > g.in_left) { rem -= g.in_left; if (load() == 0) throw(EDOM, "%s: lzw premature end", g.inf); } g.in_left -= rem; g.in_next += rem; } } buf = 0; left = 0; // mark this new location for computing the next flush mark = g.in_tot - g.in_left; // go to the next number of bits per symbol bits++; mask <<= 1; mask++; } // get a code of bits bits if (NOMORE()) break; // end of compressed data buf += (bits_t)(NEXT()) << left; left += 8; if (left < bits) { if (NOMORE()) throw(EDOM, "%s: lzw premature end", g.inf); buf += (bits_t)(NEXT()) << left; left += 8; } code = buf & mask; buf >>= bits; left -= bits; // process clear code (256) if (code == 256 && flags) { // flush unused input bits and bytes to next 8*bits bit boundary { unsigned rem = ((g.in_tot - g.in_left) - mark) % bits; if (rem) { rem = bits - rem; while (rem > g.in_left) { rem -= g.in_left; if (load() == 0) throw(EDOM, "%s: lzw premature end", g.inf); } g.in_left -= rem; g.in_next += rem; } } buf = 0; left = 0; // mark this new location for computing the next flush mark = g.in_tot - g.in_left; // go back to nine bits per symbol bits = 9; // initialize bits and mask mask = 0x1ff; end = 255; // empty table continue; // get next code } // special code to reuse last match { unsigned temp = code; // save the current code if (code > end) { // be picky on the allowed code here, and make sure that the // code we drop through (prev) will be a valid index so that // random input does not cause an exception if (code != end + 1 || prev > end) throw(EDOM, "%s: invalid lzw code", g.inf); match[stack++] = (unsigned char)final; code = prev; } // walk through linked list to generate output in reverse order while (code >= 256) { match[stack++] = suffix[code]; code = prefix[code]; } match[stack++] = (unsigned char)code; final = code; // link new table entry if (end < mask) { end++; prefix[end] = (prefix_t)prev; suffix[end] = (unsigned char)final; } // set previous code for next iteration prev = temp; } // write output in forward order while (stack > OUTSIZE - outcnt) { while (outcnt < OUTSIZE) out_buf[outcnt++] = match[--stack]; g.out_tot += outcnt; if (g.decode == 1) writen(g.outd, out_buf, outcnt); outcnt = 0; } do { out_buf[outcnt++] = match[--stack]; } while (stack); } // write any remaining buffered output g.out_tot += outcnt; if (outcnt && g.decode == 1) writen(g.outd, out_buf, outcnt); } // --- file processing --- // Extract file name from path. local char *justname(char *path) { char *p; p = strrchr(path, '/'); return p == NULL ? path : p + 1; } // Copy file attributes, from -> to, as best we can. This is best effort, so no // errors are reported. The mode bits, including suid, sgid, and the sticky bit // are copied (if allowed), the owner's user id and group id are copied (again // if allowed), and the access and modify times are copied. local int copymeta(char *from, char *to) { struct stat st; struct timeval times[2]; // get all of from's Unix meta data, return if not a regular file if (stat(from, &st) != 0 || (st.st_mode & S_IFMT) != S_IFREG) return -4; // set to's mode bits, ignore errors int ret = chmod(to, st.st_mode & 07777); // copy owner's user and group, ignore errors ret += chown(to, st.st_uid, st.st_gid); // copy access and modify times, ignore errors times[0].tv_sec = st.st_atime; times[0].tv_usec = 0; times[1].tv_sec = st.st_mtime; times[1].tv_usec = 0; ret += utimes(to, times); return ret; } // Set the access and modify times of fd to t. local void touch(char *path, time_t t) { struct timeval times[2]; times[0].tv_sec = t; times[0].tv_usec = 0; times[1].tv_sec = t; times[1].tv_usec = 0; (void)utimes(path, times); } // Request that all data buffered by the operating system for g.outd be written // to the permanent storage device. If fsync(fd) is used (POSIX), then all of // the data is sent to the device, but will likely be buffered in volatile // memory on the device itself, leaving open a window of vulnerability. // fcntl(fd, F_FULLSYNC) on the other hand, available in macOS only, will // request and wait for the device to write out its buffered data to permanent // storage. On Windows, _commit() is used. local void out_push(void) { if (g.outd == -1) return; #if defined(F_FULLSYNC) int ret = fcntl(g.outd, F_FULLSYNC); #elif defined(_WIN32) int ret = _commit(g.outd); #else int ret = fsync(g.outd); #endif if (ret == -1) throw(errno, "sync error on %s (%s)", g.outf, strerror(errno)); } // Process provided input file, or stdin if path is NULL. process() can call // itself for recursive directory processing. local void process(char *path) { volatile int method = -1; // get_header() return value size_t len; // length of base name (minus suffix) struct stat st; // to get file type and mod time ball_t err; // error information from throw() // all compressed suffixes for decoding search, in length order static char *sufs[] = {".z", "-z", "_z", ".Z", ".gz", "-gz", ".zz", "-zz", ".zip", ".ZIP", ".tgz", NULL}; // open input file with name in, descriptor ind -- set name and mtime if (path == NULL) { vstrcpy(&g.inf, &g.inz, 0, ""); g.ind = 0; g.name = NULL; g.mtime = (g.headis & 2) && fstat(g.ind, &st) == 0 && S_ISREG(st.st_mode) ? st.st_mtime : 0; len = 0; } else { // set input file name (already set if recursed here) if (path != g.inf) vstrcpy(&g.inf, &g.inz, 0, path); len = strlen(g.inf); // try to stat input file -- if not there and decoding, look for that // name with compressed suffixes if (lstat(g.inf, &st)) { if (errno == ENOENT && (g.list || g.decode)) { char **sufx = sufs; do { if (*sufx == NULL) break; vstrcpy(&g.inf, &g.inz, len, *sufx++); errno = 0; } while (lstat(g.inf, &st) && errno == ENOENT); } #if defined(EOVERFLOW) && defined(EFBIG) if (errno == EOVERFLOW || errno == EFBIG) throw(EDOM, "%s too large -- " "not compiled with large file support", g.inf); #endif if (errno) { g.inf[len] = 0; complain("skipping: %s does not exist", g.inf); return; } len = strlen(g.inf); } // only process regular files or named pipes, but allow symbolic links // if -f, recurse into directory if -r if ((st.st_mode & S_IFMT) != S_IFREG && (st.st_mode & S_IFMT) != S_IFIFO && (st.st_mode & S_IFMT) != S_IFLNK && (st.st_mode & S_IFMT) != S_IFDIR) { complain("skipping: %s is a special file or device", g.inf); return; } if ((st.st_mode & S_IFMT) == S_IFLNK && !g.force && !g.pipeout) { complain("skipping: %s is a symbolic link", g.inf); return; } if ((st.st_mode & S_IFMT) == S_IFDIR && !g.recurse) { complain("skipping: %s is a directory", g.inf); return; } // recurse into directory (assumes Unix) if ((st.st_mode & S_IFMT) == S_IFDIR) { char *roll = NULL; size_t size = 0, off = 0, base; DIR *here; struct dirent *next; // accumulate list of entries (need to do this, since readdir() // behavior not defined if directory modified between calls) here = opendir(g.inf); if (here == NULL) return; while ((next = readdir(here)) != NULL) { if (next->d_name[0] == 0 || (next->d_name[0] == '.' && (next->d_name[1] == 0 || (next->d_name[1] == '.' && next->d_name[2] == 0)))) continue; off = vstrcpy(&roll, &size, off, next->d_name); } closedir(here); vstrcpy(&roll, &size, off, ""); // run process() for each entry in the directory base = len && g.inf[len - 1] != (unsigned char)'/' ? vstrcpy(&g.inf, &g.inz, len, "/") - 1 : len; for (off = 0; roll[off]; off += strlen(roll + off) + 1) { vstrcpy(&g.inf, &g.inz, base, roll + off); process(g.inf); } g.inf[len] = 0; // release list of entries FREE(roll); return; } // don't compress .gz (or provided suffix) files, unless -f if (!(g.force || g.list || g.decode) && len >= strlen(g.sufx) && strcmp(g.inf + len - strlen(g.sufx), g.sufx) == 0) { grumble("skipping: %s ends with %s", g.inf, g.sufx); return; } // create output file only if input file has compressed suffix if (g.decode == 1 && !g.pipeout && !g.list) { size_t suf = compressed_suffix(g.inf); if (suf == 0) { complain("skipping: %s does not have compressed suffix", g.inf); return; } len -= suf; } // open input file g.ind = open(g.inf, O_RDONLY, 0); if (g.ind < 0) throw(errno, "read error on %s (%s)", g.inf, strerror(errno)); // prepare gzip header information for compression g.name = g.headis & 1 ? justname(g.inf) : NULL; g.mtime = g.headis & 2 ? st.st_mtime : 0; } SET_BINARY_MODE(g.ind); // if requested, just list information about the input file if (g.list && g.decode != 2) { list_info(); load_end(); return; } // if decoding or testing, try to read gzip header if (g.decode) { in_init(); method = get_header(1); if (method != 8 && method != 257 && // gzip -cdf acts like cat on uncompressed input !((method == -1 || method == -2) && g.force && g.pipeout && g.decode != 2 && !g.list)) { load_end(); complain(method == -6 ? "skipping: %s corrupt: header crc error" : method == -1 ? "skipping: %s empty" : method < 0 ? "skipping: %s unrecognized format" : "skipping: %s unknown compression method", g.inf); return; } // if requested, test input file (possibly a test list) if (g.decode == 2) { try { if (method == 8) infchk(); else { unlzw(); if (g.list) { g.in_tot -= 3; show_info(method, 0, g.out_tot, 0); } } } catch (err) { if (err.code != EDOM) punt(err); complain("skipping: %s", err.why); drop(err); outb(NULL, NULL, 0); } load_end(); return; } } // create output file out, descriptor outd if (path == NULL || g.pipeout) { // write to stdout g.outf = alloc(NULL, strlen("") + 1); strcpy(g.outf, ""); g.outd = 1; if (!g.decode && !g.force && isatty(g.outd)) throw(EINVAL, "trying to write compressed data to a terminal" " (use -f to force)"); } else { char *to = g.inf, *sufx = ""; size_t pre = 0; // select parts of the output file name if (g.decode) { // for -dN or -dNT, use the path from the input file and the name // from the header, stripping any path in the header name if ((g.headis & 1) != 0 && g.hname != NULL) { pre = (size_t)(justname(g.inf) - g.inf); to = justname(g.hname); len = strlen(to); } // for -d or -dNn, replace abbreviated suffixes else if (strcmp(to + len, ".tgz") == 0) sufx = ".tar"; } else // add appropriate suffix when compressing sufx = g.sufx; // create output file and open to write, overwriting any existing file // of the same name only if requested with --force or -f g.outf = alloc(NULL, pre + len + strlen(sufx) + 1); memcpy(g.outf, g.inf, pre); memcpy(g.outf + pre, to, len); strcpy(g.outf + pre + len, sufx); g.outd = open(g.outf, O_CREAT | O_TRUNC | O_WRONLY | (g.force ? 0 : O_EXCL), 0600); // if it exists and wasn't forced, give the user a chance to overwrite if (g.outd < 0 && errno == EEXIST) { int overwrite = 0; if (isatty(0) && g.verbosity) { // get a response from the user -- the first non-blank // character has to be a "y" or a "Y" to permit an overwrite fprintf(stderr, "%s exists -- overwrite (y/n)? ", g.outf); fflush(stderr); int ch, first = 1; do { ch = getchar(); if (first == 1) { if (ch == ' ' || ch == '\t') continue; if (ch == 'y' || ch == 'Y') overwrite = 1; first = 0; } } while (ch != EOF && ch != '\n' && ch != '\r'); } if (!overwrite) { complain("skipping: %s exists", g.outf); RELEASE(g.outf); load_end(); return; } g.outd = open(g.outf, O_CREAT | O_TRUNC | O_WRONLY, 0600); } // if some other error, give up if (g.outd < 0) throw(errno, "write error on %s (%s)", g.outf, strerror(errno)); } SET_BINARY_MODE(g.outd); // process ind to outd if (g.verbosity > 1) fprintf(stderr, "%s to %s ", g.inf, g.outf); if (g.decode) { try { if (method == 8) infchk(); else if (method == 257) unlzw(); else cat(); } catch (err) { if (err.code != EDOM) punt(err); complain("skipping: %s", err.why); drop(err); outb(NULL, NULL, 0); if (g.outd != -1 && g.outd != 1) { close(g.outd); g.outd = -1; unlink(g.outf); RELEASE(g.outf); } } } #ifndef NOTHREAD else if (g.procs > 1) parallel_compress(); #endif else single_compress(0); if (g.verbosity > 1) { putc('\n', stderr); fflush(stderr); } // finish up, copy attributes, set times, delete original load_end(); if (g.outd != -1 && g.outd != 1) { if (g.sync) out_push(); // push to permanent storage if (close(g.outd)) throw(errno, "write error on %s (%s)", g.outf, strerror(errno)); g.outd = -1; // now prevent deletion on interrupt if (g.ind != 0) { copymeta(g.inf, g.outf); if (!g.keep) { if (st.st_nlink > 1 && !g.force) complain("%s has hard links -- not unlinking", g.inf); else unlink(g.inf); } } if (g.decode && (g.headis & 2) != 0 && g.stamp) touch(g.outf, g.stamp); } RELEASE(g.outf); } local char *helptext[] = { "Usage: pigz [options] [files ...]", " will compress files in place, adding the suffix '.gz'. If no files are", #ifdef NOTHREAD " specified, stdin will be compressed to stdout. pigz does what gzip does.", #else " specified, stdin will be compressed to stdout. pigz does what gzip does,", " but spreads the work over multiple processors and cores when compressing.", #endif "", "Options:", #ifdef NOZOPFLI " -0 to -9 Compression level", #else " -0 to -9, -11 Compression level (level 11, zopfli, is much slower)", #endif " --fast, --best Compression levels 1 and 9 respectively", " -A, --alias xxx Use xxx as the name for any --zip entry from stdin", " -b, --blocksize mmm Set compression block size to mmmK (default 128K)", " -c, --stdout Write all processed output to stdout (won't delete)", " -C, --comment ccc Put comment ccc in the gzip or zip header", " -d, --decompress Decompress the compressed input", " -f, --force Force overwrite, compress .gz, links, and to terminal", #ifndef NOZOPFLI " -F --first Do iterations first, before block split for -11", #endif " -h, --help Display a help screen and quit", " -H, --huffman Use only Huffman coding for compression", " -i, --independent Compress blocks independently for damage recovery", #ifndef NOZOPFLI " -I, --iterations n Number of iterations for -11 optimization", " -J, --maxsplits n Maximum number of split blocks for -11", #endif " -k, --keep Do not delete original file after processing", " -K, --zip Compress to PKWare zip (.zip) single entry format", " -l, --list List the contents of the compressed input", " -L, --license Display the pigz license and quit", " -m, --no-time Do not store or restore mod time", " -M, --time Store or restore mod time", " -n, --no-name Do not store or restore file name or mod time", " -N, --name Store or restore file name and mod time", #ifndef NOZOPFLI " -O --oneblock Do not split into smaller blocks for -11", #endif #ifndef NOTHREAD " -p, --processes n Allow up to n compression threads (default is the", " number of online processors, or 8 if unknown)", #endif " -q, --quiet Print no messages, even on error", " -r, --recursive Process the contents of all subdirectories", " -R, --rsyncable Input-determined block locations for rsync", " -S, --suffix .sss Use suffix .sss instead of .gz (for compression)", " -t, --test Test the integrity of the compressed input", " -U, --rle Use run-length encoding for compression", #ifdef PIGZ_DEBUG " -v, --verbose Provide more verbose output (-vv to debug)", #else " -v, --verbose Provide more verbose output", #endif " -V --version Show the version of pigz", " -Y --synchronous Force output file write to permanent storage", " -z, --zlib Compress to zlib (.zz) instead of gzip format", " -- All arguments after \"--\" are treated as files" }; // Display the help text above. local void help(void) { int n; if (g.verbosity == 0) return; for (n = 0; n < (int)(sizeof(helptext) / sizeof(char *)); n++) fprintf(stderr, "%s\n", helptext[n]); fflush(stderr); exit(0); } #ifndef NOTHREAD // Try to determine the number of processors. local int nprocs(int n) { # ifdef _SC_NPROCESSORS_ONLN n = (int)sysconf(_SC_NPROCESSORS_ONLN); # else # ifdef _SC_NPROC_ONLN n = (int)sysconf(_SC_NPROC_ONLN); # else # ifdef __hpux struct pst_dynamic psd; if (pstat_getdynamic(&psd, sizeof(psd), (size_t)1, 0) != -1) n = psd.psd_proc_cnt; # endif # endif # endif return n; } #endif // Set option defaults. local void defaults(void) { g.level = Z_DEFAULT_COMPRESSION; g.strategy = Z_DEFAULT_STRATEGY; #ifndef NOZOPFLI // default zopfli options as set by ZopfliInitOptions(): // verbose = 0 // numiterations = 15 // blocksplitting = 1 // blocksplittinglast = 0 // blocksplittingmax = 15 ZopfliInitOptions(&g.zopts); #endif g.block = 131072UL; // 128K g.shift = x2nmodp(g.block, 3); #ifdef NOTHREAD g.procs = 1; #else g.procs = nprocs(8); #endif g.rsync = 0; // don't do rsync blocking g.setdict = 1; // initialize dictionary each thread g.verbosity = 1; // normal message level g.headis = 3; // store name and time (low bits == 11), // restore neither (next bits == 00), // where 01 is name and 10 is time g.pipeout = 0; // don't force output to stdout g.sufx = ".gz"; // compressed file suffix g.comment = NULL; // no comment g.decode = 0; // compress g.list = 0; // compress g.keep = 0; // delete input file once compressed g.force = 0; // don't overwrite, don't compress links g.sync = 0; // don't force a flush on output g.recurse = 0; // don't go into directories g.form = 0; // use gzip format } // Long options conversion to short options. local char *longopts[][2] = { {"LZW", "Z"}, {"lzw", "Z"}, {"alias", "A"}, {"ascii", "a"}, {"best", "9"}, {"bits", "Z"}, {"blocksize", "b"}, {"decompress", "d"}, {"fast", "1"}, {"force", "f"}, {"comment", "C"}, #ifndef NOZOPFLI {"first", "F"}, {"iterations", "I"}, {"maxsplits", "J"}, {"oneblock", "O"}, #endif {"help", "h"}, {"independent", "i"}, {"keep", "k"}, {"license", "L"}, {"list", "l"}, {"name", "N"}, {"no-name", "n"}, {"no-time", "m"}, {"processes", "p"}, {"quiet", "q"}, {"recursive", "r"}, {"rsyncable", "R"}, {"silent", "q"}, {"stdout", "c"}, {"suffix", "S"}, {"synchronous", "Y"}, {"test", "t"}, {"time", "M"}, {"to-stdout", "c"}, {"uncompress", "d"}, {"verbose", "v"}, {"version", "V"}, {"zip", "K"}, {"zlib", "z"}, {"huffman", "H"}, {"rle", "U"}}; #define NLOPTS (sizeof(longopts) / (sizeof(char *) << 1)) // Either new buffer size, new compression level, or new number of processes. // Get rid of old buffers and threads to force the creation of new ones with // the new settings. local void new_opts(void) { single_compress(1); #ifndef NOTHREAD finish_jobs(); #endif } // Verify that arg is only digits, and if so, return the decimal value. local size_t num(char *arg) { char *str = arg; size_t val = 0; if (*str == 0) throw(EINVAL, "internal error: empty parameter"); do { if (*str < '0' || *str > '9' || (val && ((~(size_t)0) - (size_t)(*str - '0')) / val < 10)) throw(EINVAL, "invalid numeric parameter: %s", arg); val = val * 10 + (size_t)(*str - '0'); } while (*++str); return val; } // Process an argument, return true if it is an option (not a filename) local int option(char *arg) { static int get = 0; // if not zero, look for option parameter char bad[3] = "-X"; // for error messages (X is replaced) // if no argument or dash option, check status of get if (get && (arg == NULL || *arg == '-')) { bad[1] = "bpSIJAC"[get - 1]; throw(EINVAL, "missing parameter after %s", bad); } if (arg == NULL) return 1; // process long option or short options if (*arg == '-') { // a single dash will be interpreted as stdin if (*++arg == 0) return 0; // process long option (fall through with equivalent short option) if (*arg == '-') { int j; arg++; for (j = NLOPTS - 1; j >= 0; j--) if (strcmp(arg, longopts[j][0]) == 0) { arg = longopts[j][1]; break; } if (j < 0) throw(EINVAL, "invalid option: %s", arg - 2); } // process short options (more than one allowed after dash) do { // if looking for a parameter, don't process more single character // options until we have the parameter if (get) { if (get == 3) throw(EINVAL, "invalid usage: -S must be followed by space"); if (get == 7) throw(EINVAL, "invalid usage: -C must be followed by space"); break; // allow -*nnn to fall to parameter code } // process next single character option or compression level bad[1] = *arg; switch (*arg) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': g.level = *arg - '0'; while (arg[1] >= '0' && arg[1] <= '9') { if (g.level && (INT_MAX - (arg[1] - '0')) / g.level < 10) throw(EINVAL, "only levels 0..9 and 11 are allowed"); g.level = g.level * 10 + *++arg - '0'; } if (g.level == 10 || g.level > 11) throw(EINVAL, "only levels 0..9 and 11 are allowed"); break; case 'A': get = 6; break; case 'C': get = 7; break; #ifndef NOZOPFLI case 'F': g.zopts.blocksplittinglast = 1; break; #endif case 'H': g.strategy = Z_HUFFMAN_ONLY; break; #ifndef NOZOPFLI case 'I': get = 4; break; case 'J': get = 5; break; #endif case 'K': g.form = 2; g.sufx = ".zip"; break; case 'L': puts(VERSION); puts("Copyright (C) 2007-2023 Mark Adler"); puts("Subject to the terms of the zlib license."); puts("No warranty is provided or implied."); exit(0); break; // avoid warning case 'M': g.headis |= 0xa; break; case 'N': g.headis = 0xf; break; #ifndef NOZOPFLI case 'O': g.zopts.blocksplitting = 0; break; #endif case 'R': g.rsync = 1; break; case 'S': get = 3; break; // -T defined below as an alternative for -m case 'V': puts(VERSION); if (g.verbosity > 1) printf("zlib %s\n", zlibVersion()); exit(0); break; // avoid warning case 'Y': g.sync = 1; break; case 'Z': throw(EINVAL, "invalid option: LZW output not supported: %s", bad); break; // avoid warning case 'a': throw(EINVAL, "invalid option: no ascii conversion: %s", bad); break; // avoid warning case 'b': get = 1; break; case 'c': g.pipeout = 1; break; case 'd': if (!g.decode) g.headis >>= 2; g.decode = 1; break; case 'f': g.force = 1; break; case 'h': help(); break; case 'i': g.setdict = 0; break; case 'k': g.keep = 1; break; case 'l': g.list = 1; break; case 'n': g.headis = 0; break; case 'T': case 'm': g.headis &= ~0xa; break; case 'p': get = 2; break; case 'q': g.verbosity = 0; break; case 'r': g.recurse = 1; break; case 't': g.decode = 2; break; case 'U': g.strategy = Z_RLE; break; case 'v': g.verbosity++; break; case 'z': g.form = 1; g.sufx = ".zz"; break; default: throw(EINVAL, "invalid option: %s", bad); } } while (*++arg); if (*arg == 0) return 1; } // process option parameter for -b, -p, -A, -S, -I, or -J if (get) { size_t n; if (get == 1) { n = num(arg); g.block = n << 10; // chunk size #ifndef NOTHREAD g.shift = x2nmodp(g.block, 3); #endif if (g.block < DICT) throw(EINVAL, "block size too small (must be >= 32K)"); if (n != g.block >> 10 || OUTPOOL(g.block) < g.block || (ssize_t)OUTPOOL(g.block) < 0 || g.block > (1UL << 29)) // limited by append_len() throw(EINVAL, "block size too large: %s", arg); } else if (get == 2) { n = num(arg); g.procs = (int)n; // # processes if (g.procs < 1) throw(EINVAL, "invalid number of processes: %s", arg); if ((size_t)g.procs != n || INBUFS(g.procs) < 1) throw(EINVAL, "too many processes: %s", arg); #ifdef NOTHREAD if (g.procs > 1) throw(EINVAL, "compiled without threads"); #endif } else if (get == 3) { if (*arg == 0) throw(EINVAL, "suffix cannot be empty"); g.sufx = arg; // gz suffix } #ifndef NOZOPFLI else if (get == 4) g.zopts.numiterations = (int)num(arg); // optimize iterations else if (get == 5) g.zopts.blocksplittingmax = (int)num(arg); // max block splits else if (get == 6) g.alias = arg; // zip name for stdin #endif else if (get == 7) g.comment = arg; // header comment get = 0; return 1; } // neither an option nor parameter return 0; } #ifndef NOTHREAD // handle error received from yarn function local void cut_yarn(int err) { throw(err, "internal threads error"); } #endif // Process command line arguments. int main(int argc, char **argv) { int n; // general index int nop; // index before which "-" means stdin int done; // number of named files processed size_t k; // program name length char *opts, *p; // environment default options, marker ball_t err; // error information from throw() g.ret = 0; try { // initialize globals g.inf = NULL; g.inz = 0; #ifndef NOTHREAD g.in_which = -1; #endif g.alias = "-"; g.outf = NULL; g.first = 1; g.hname = NULL; g.hcomm = NULL; // save pointer to program name for error messages p = strrchr(argv[0], '/'); p = p == NULL ? argv[0] : p + 1; g.prog = *p ? p : "pigz"; // prepare for interrupts and logging signal(SIGINT, cut_short); #ifndef NOTHREAD yarn_prefix = g.prog; // prefix for yarn error messages yarn_abort = cut_yarn; // call on thread error #endif #ifdef PIGZ_DEBUG gettimeofday(&start, NULL); // starting time for log entries log_init(); // initialize logging #endif // set all options to defaults defaults(); // check zlib version if (zlib_vernum() < 0x1230) throw(EINVAL, "zlib version less than 1.2.3"); // create CRC table, in case zlib compiled with dynamic tables get_crc_table(); // process user environment variable defaults in GZIP opts = getenv("GZIP"); if (opts != NULL) { while (*opts) { while (*opts == ' ' || *opts == '\t') opts++; p = opts; while (*p && *p != ' ' && *p != '\t') p++; n = *p; *p = 0; if (!option(opts)) throw(EINVAL, "cannot provide files in " "GZIP environment variable"); opts = p + (n ? 1 : 0); } option(NULL); // check for missing parameter } // process user environment variable defaults in PIGZ as well opts = getenv("PIGZ"); if (opts != NULL) { while (*opts) { while (*opts == ' ' || *opts == '\t') opts++; p = opts; while (*p && *p != ' ' && *p != '\t') p++; n = *p; *p = 0; if (!option(opts)) throw(EINVAL, "cannot provide files in " "PIGZ environment variable"); opts = p + (n ? 1 : 0); } option(NULL); // check for missing parameter } // decompress if named "unpigz" or "gunzip", to stdout if "*cat" if (strcmp(g.prog, "unpigz") == 0 || strcmp(g.prog, "gunzip") == 0) { if (!g.decode) g.headis >>= 2; g.decode = 1; } if ((k = strlen(g.prog)) > 2 && strcmp(g.prog + k - 3, "cat") == 0) { if (!g.decode) g.headis >>= 2; g.decode = 1; g.pipeout = 1; } // if no arguments and compressed data to/from terminal, show help if (argc < 2 && isatty(g.decode ? 0 : 1)) help(); // process all command-line options first nop = argc; for (n = 1; n < argc; n++) if (strcmp(argv[n], "--") == 0) { nop = n; // after this, "-" is the name "-" argv[n] = NULL; // remove option break; // ignore options after "--" } else if (option(argv[n])) // process argument argv[n] = NULL; // remove if option option(NULL); // check for missing parameter // process command-line filenames done = 0; for (n = 1; n < argc; n++) if (argv[n] != NULL) { if (done == 1 && g.pipeout && !g.decode && !g.list && g.form > 1) complain("warning: output will be concatenated zip files" " -- %s will not be able to extract", g.prog); process(n < nop && strcmp(argv[n], "-") == 0 ? NULL : argv[n]); done++; } // list stdin or compress stdin to stdout if no file names provided if (done == 0) process(NULL); } always { // release resources RELEASE(g.inf); g.inz = 0; new_opts(); } catch (err) { THREADABORT(err); } // show log (if any) log_dump(); return g.ret; }