cmac_unittests.cc 7.64 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at http://mozilla.org/MPL/2.0/.

#include "gtest/gtest.h"

#include <stdint.h>
#include <memory>

#include "blapi.h"
#include "secitem.h"
#include "freebl_scoped_ptrs.h"

class CmacAesTest : public ::testing::Test {
 protected:
  bool Compare(const uint8_t *actual, const uint8_t *expected,
               unsigned int length) {
    return strncmp((const char *)actual, (const char *)expected, length) == 0;
  }
};

TEST_F(CmacAesTest, CreateInvalidSize) {
  uint8_t key[1] = {0x00};
  ScopedCMACContext ctx(CMAC_Create(CMAC_AES, key, sizeof(key)));
  ASSERT_EQ(ctx, nullptr);
}

TEST_F(CmacAesTest, CreateRightSize) {
  uint8_t *key = PORT_NewArray(uint8_t, AES_128_KEY_LENGTH);
  ScopedCMACContext ctx(CMAC_Create(CMAC_AES, key, AES_128_KEY_LENGTH));

  ASSERT_NE(ctx, nullptr);
  PORT_Free(key);
}

// The following tests were taken from NIST's Cryptographic Standards and
// Guidelines page for AES-CMAC Examples with Intermediate Values. These same
// test vectors for AES-128 can be found in RFC 4493, Section 4.

static const uint8_t kNistKeys[][AES_256_KEY_LENGTH] = {
    {0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15,
     0x88, 0x09, 0xCF, 0x4F, 0x3C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
    {0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52, 0xC8, 0x10, 0xF3,
     0x2B, 0x80, 0x90, 0x79, 0xE5, 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C,
     0x6B, 0x7B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
    {0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE, 0x2B, 0x73, 0xAE,
     0xF0, 0x85, 0x7D, 0x77, 0x81, 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61,
     0x08, 0xD7, 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4}};
static const size_t kNistKeyLengthsCount = PR_ARRAY_SIZE(kNistKeys);
static const unsigned int kNistKeyLengths[kNistKeyLengthsCount] = {
    AES_128_KEY_LENGTH, AES_192_KEY_LENGTH, AES_256_KEY_LENGTH};

static const uint8_t kNistPlaintext[64] = {
    0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E,
    0x11, 0x73, 0x93, 0x17, 0x2A, 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03,
    0xAC, 0x9C, 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51, 0x30,
    0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11, 0xE5, 0xFB, 0xC1, 0x19,
    0x1A, 0x0A, 0x52, 0xEF, 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B,
    0x17, 0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10};
static const unsigned int kNistPlaintextLengths[] = {0, 16, 20, 64};
static const size_t kNistPlaintextLengthsCount =
    PR_ARRAY_SIZE(kNistPlaintextLengths);

// This table contains the result of a CMAC over kNistPlaintext using keys from
// kNistKeys.  For each key, there are kNistPlaintextLengthsCount answers, all
// listed one after the other as the input is truncated to the different sizes
// in kNistPlaintextLengths.
static const uint8_t kNistKnown[][AES_BLOCK_SIZE] = {
    {0xBB, 0x1D, 0x69, 0x29, 0xE9, 0x59, 0x37, 0x28, 0x7F, 0xA3, 0x7D, 0x12,
     0x9B, 0x75, 0x67, 0x46},
    {0x07, 0x0A, 0x16, 0xB4, 0x6B, 0x4D, 0x41, 0x44, 0xF7, 0x9B, 0xDD, 0x9D,
     0xD0, 0x4A, 0x28, 0x7C},
    {0x7D, 0x85, 0x44, 0x9E, 0xA6, 0xEA, 0x19, 0xC8, 0x23, 0xA7, 0xBF, 0x78,
     0x83, 0x7D, 0xFA, 0xDE},
    {0x51, 0xF0, 0xBE, 0xBF, 0x7E, 0x3B, 0x9D, 0x92, 0xFC, 0x49, 0x74, 0x17,
     0x79, 0x36, 0x3C, 0xFE},
    {0xD1, 0x7D, 0xDF, 0x46, 0xAD, 0xAA, 0xCD, 0xE5, 0x31, 0xCA, 0xC4, 0x83,
     0xDE, 0x7A, 0x93, 0x67},
    {0x9E, 0x99, 0xA7, 0xBF, 0x31, 0xE7, 0x10, 0x90, 0x06, 0x62, 0xF6, 0x5E,
     0x61, 0x7C, 0x51, 0x84},
    {0x3D, 0x75, 0xC1, 0x94, 0xED, 0x96, 0x07, 0x04, 0x44, 0xA9, 0xFA, 0x7E,
     0xC7, 0x40, 0xEC, 0xF8},
    {0xA1, 0xD5, 0xDF, 0x0E, 0xED, 0x79, 0x0F, 0x79, 0x4D, 0x77, 0x58, 0x96,
     0x59, 0xF3, 0x9A, 0x11},
    {0x02, 0x89, 0x62, 0xF6, 0x1B, 0x7B, 0xF8, 0x9E, 0xFC, 0x6B, 0x55, 0x1F,
     0x46, 0x67, 0xD9, 0x83},
    {0x28, 0xA7, 0x02, 0x3F, 0x45, 0x2E, 0x8F, 0x82, 0xBD, 0x4B, 0xF2, 0x8D,
     0x8C, 0x37, 0xC3, 0x5C},
    {0x15, 0x67, 0x27, 0xDC, 0x08, 0x78, 0x94, 0x4A, 0x02, 0x3C, 0x1F, 0xE0,
     0x3B, 0xAD, 0x6D, 0x93},
    {0xE1, 0x99, 0x21, 0x90, 0x54, 0x9F, 0x6E, 0xD5, 0x69, 0x6A, 0x2C, 0x05,
     0x6C, 0x31, 0x54, 0x10}};
PR_STATIC_ASSERT(PR_ARRAY_SIZE(kNistKnown) ==
                 kNistKeyLengthsCount * kNistPlaintextLengthsCount);

TEST_F(CmacAesTest, AesNistAligned) {
  for (unsigned int key_index = 0; key_index < kNistKeyLengthsCount;
       key_index++) {
    ScopedCMACContext ctx(CMAC_Create(CMAC_AES, kNistKeys[key_index],
                                      kNistKeyLengths[key_index]));
    ASSERT_NE(ctx, nullptr);

    for (unsigned int plaintext_index = 0;
         plaintext_index < kNistPlaintextLengthsCount; plaintext_index++) {
      CMAC_Begin(ctx.get());

      unsigned int known_index =
          (key_index * kNistPlaintextLengthsCount) + plaintext_index;
      CMAC_Update(ctx.get(), kNistPlaintext,
                  kNistPlaintextLengths[plaintext_index]);

      uint8_t output[AES_BLOCK_SIZE];
      CMAC_Finish(ctx.get(), output, NULL, AES_BLOCK_SIZE);

      ASSERT_TRUE(Compare(output, kNistKnown[known_index], AES_BLOCK_SIZE));
    }
  }
}

TEST_F(CmacAesTest, AesNistUnaligned) {
  for (unsigned int key_index = 0; key_index < kNistKeyLengthsCount;
       key_index++) {
    unsigned int key_length = kNistKeyLengths[key_index];
    ScopedCMACContext ctx(
        CMAC_Create(CMAC_AES, kNistKeys[key_index], key_length));
    ASSERT_NE(ctx, nullptr);

    // Skip the zero-length test.
    for (unsigned int plaintext_index = 1;
         plaintext_index < kNistPlaintextLengthsCount; plaintext_index++) {
      unsigned int known_index =
          (key_index * kNistPlaintextLengthsCount) + plaintext_index;
      unsigned int plaintext_length = kNistPlaintextLengths[plaintext_index];

      // Test all possible offsets and make sure that misaligned updates
      // produce the desired result. That is, do two updates:
      //  0      ... offset
      //  offset ... len - offset
      // and ensure the result is the same as doing one update.
      for (unsigned int offset = 1; offset < plaintext_length; offset++) {
        CMAC_Begin(ctx.get());

        CMAC_Update(ctx.get(), kNistPlaintext, offset);
        CMAC_Update(ctx.get(), kNistPlaintext + offset,
                    plaintext_length - offset);

        uint8_t output[AES_BLOCK_SIZE];
        CMAC_Finish(ctx.get(), output, NULL, AES_BLOCK_SIZE);

        ASSERT_TRUE(Compare(output, kNistKnown[known_index], AES_BLOCK_SIZE));
      }
    }
  }
}

TEST_F(CmacAesTest, AesNistTruncated) {
  for (unsigned int key_index = 0; key_index < kNistKeyLengthsCount;
       key_index++) {
    unsigned int key_length = kNistKeyLengths[key_index];
    ScopedCMACContext ctx(
        CMAC_Create(CMAC_AES, kNistKeys[key_index], key_length));
    ASSERT_TRUE(ctx != nullptr);

    // Skip the zero-length test.
    for (unsigned int plaintext_index = 1;
         plaintext_index < kNistPlaintextLengthsCount; plaintext_index++) {
      unsigned int known_index =
          (key_index * kNistPlaintextLengthsCount) + plaintext_index;
      unsigned int plaintext_length = kNistPlaintextLengths[plaintext_index];

      // Test truncated outputs to ensure that we always get the desired values.
      for (unsigned int out_len = 1; out_len < AES_BLOCK_SIZE; out_len++) {
        CMAC_Begin(ctx.get());

        CMAC_Update(ctx.get(), kNistPlaintext, plaintext_length);

        unsigned int actual_out_len = 0;
        uint8_t output[AES_BLOCK_SIZE];
        CMAC_Finish(ctx.get(), output, &actual_out_len, out_len);

        ASSERT_TRUE(actual_out_len == out_len);
        ASSERT_TRUE(Compare(output, kNistKnown[known_index], out_len));
      }
    }
  }
}