Skip to content

Latest commit

 

History

History
187 lines (159 loc) · 7.64 KB

cmac_unittests.cc

File metadata and controls

187 lines (159 loc) · 7.64 KB
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at http://mozilla.org/MPL/2.0/.
#include "gtest/gtest.h"
#include <stdint.h>
#include <memory>
#include "blapi.h"
#include "secitem.h"
#include "freebl_scoped_ptrs.h"
class CmacAesTest : public ::testing::Test {
protected:
bool Compare(const uint8_t *actual, const uint8_t *expected,
unsigned int length) {
return strncmp((const char *)actual, (const char *)expected, length) == 0;
}
};
TEST_F(CmacAesTest, CreateInvalidSize) {
uint8_t key[1] = {0x00};
ScopedCMACContext ctx(CMAC_Create(CMAC_AES, key, sizeof(key)));
ASSERT_EQ(ctx, nullptr);
}
TEST_F(CmacAesTest, CreateRightSize) {
uint8_t *key = PORT_NewArray(uint8_t, AES_128_KEY_LENGTH);
ScopedCMACContext ctx(CMAC_Create(CMAC_AES, key, AES_128_KEY_LENGTH));
ASSERT_NE(ctx, nullptr);
PORT_Free(key);
}
// The following tests were taken from NIST's Cryptographic Standards and
// Guidelines page for AES-CMAC Examples with Intermediate Values. These same
// test vectors for AES-128 can be found in RFC 4493, Section 4.
static const uint8_t kNistKeys[][AES_256_KEY_LENGTH] = {
{0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15,
0x88, 0x09, 0xCF, 0x4F, 0x3C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52, 0xC8, 0x10, 0xF3,
0x2B, 0x80, 0x90, 0x79, 0xE5, 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C,
0x6B, 0x7B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE, 0x2B, 0x73, 0xAE,
0xF0, 0x85, 0x7D, 0x77, 0x81, 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61,
0x08, 0xD7, 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4}};
static const size_t kNistKeyLengthsCount = PR_ARRAY_SIZE(kNistKeys);
static const unsigned int kNistKeyLengths[kNistKeyLengthsCount] = {
AES_128_KEY_LENGTH, AES_192_KEY_LENGTH, AES_256_KEY_LENGTH};
static const uint8_t kNistPlaintext[64] = {
0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E,
0x11, 0x73, 0x93, 0x17, 0x2A, 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03,
0xAC, 0x9C, 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51, 0x30,
0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11, 0xE5, 0xFB, 0xC1, 0x19,
0x1A, 0x0A, 0x52, 0xEF, 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B,
0x17, 0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10};
static const unsigned int kNistPlaintextLengths[] = {0, 16, 20, 64};
static const size_t kNistPlaintextLengthsCount =
PR_ARRAY_SIZE(kNistPlaintextLengths);
// This table contains the result of a CMAC over kNistPlaintext using keys from
// kNistKeys. For each key, there are kNistPlaintextLengthsCount answers, all
// listed one after the other as the input is truncated to the different sizes
// in kNistPlaintextLengths.
static const uint8_t kNistKnown[][AES_BLOCK_SIZE] = {
{0xBB, 0x1D, 0x69, 0x29, 0xE9, 0x59, 0x37, 0x28, 0x7F, 0xA3, 0x7D, 0x12,
0x9B, 0x75, 0x67, 0x46},
{0x07, 0x0A, 0x16, 0xB4, 0x6B, 0x4D, 0x41, 0x44, 0xF7, 0x9B, 0xDD, 0x9D,
0xD0, 0x4A, 0x28, 0x7C},
{0x7D, 0x85, 0x44, 0x9E, 0xA6, 0xEA, 0x19, 0xC8, 0x23, 0xA7, 0xBF, 0x78,
0x83, 0x7D, 0xFA, 0xDE},
{0x51, 0xF0, 0xBE, 0xBF, 0x7E, 0x3B, 0x9D, 0x92, 0xFC, 0x49, 0x74, 0x17,
0x79, 0x36, 0x3C, 0xFE},
{0xD1, 0x7D, 0xDF, 0x46, 0xAD, 0xAA, 0xCD, 0xE5, 0x31, 0xCA, 0xC4, 0x83,
0xDE, 0x7A, 0x93, 0x67},
{0x9E, 0x99, 0xA7, 0xBF, 0x31, 0xE7, 0x10, 0x90, 0x06, 0x62, 0xF6, 0x5E,
0x61, 0x7C, 0x51, 0x84},
{0x3D, 0x75, 0xC1, 0x94, 0xED, 0x96, 0x07, 0x04, 0x44, 0xA9, 0xFA, 0x7E,
0xC7, 0x40, 0xEC, 0xF8},
{0xA1, 0xD5, 0xDF, 0x0E, 0xED, 0x79, 0x0F, 0x79, 0x4D, 0x77, 0x58, 0x96,
0x59, 0xF3, 0x9A, 0x11},
{0x02, 0x89, 0x62, 0xF6, 0x1B, 0x7B, 0xF8, 0x9E, 0xFC, 0x6B, 0x55, 0x1F,
0x46, 0x67, 0xD9, 0x83},
{0x28, 0xA7, 0x02, 0x3F, 0x45, 0x2E, 0x8F, 0x82, 0xBD, 0x4B, 0xF2, 0x8D,
0x8C, 0x37, 0xC3, 0x5C},
{0x15, 0x67, 0x27, 0xDC, 0x08, 0x78, 0x94, 0x4A, 0x02, 0x3C, 0x1F, 0xE0,
0x3B, 0xAD, 0x6D, 0x93},
{0xE1, 0x99, 0x21, 0x90, 0x54, 0x9F, 0x6E, 0xD5, 0x69, 0x6A, 0x2C, 0x05,
0x6C, 0x31, 0x54, 0x10}};
PR_STATIC_ASSERT(PR_ARRAY_SIZE(kNistKnown) ==
kNistKeyLengthsCount * kNistPlaintextLengthsCount);
TEST_F(CmacAesTest, AesNistAligned) {
for (unsigned int key_index = 0; key_index < kNistKeyLengthsCount;
key_index++) {
ScopedCMACContext ctx(CMAC_Create(CMAC_AES, kNistKeys[key_index],
kNistKeyLengths[key_index]));
ASSERT_NE(ctx, nullptr);
for (unsigned int plaintext_index = 0;
plaintext_index < kNistPlaintextLengthsCount; plaintext_index++) {
CMAC_Begin(ctx.get());
unsigned int known_index =
(key_index * kNistPlaintextLengthsCount) + plaintext_index;
CMAC_Update(ctx.get(), kNistPlaintext,
kNistPlaintextLengths[plaintext_index]);
uint8_t output[AES_BLOCK_SIZE];
CMAC_Finish(ctx.get(), output, NULL, AES_BLOCK_SIZE);
ASSERT_TRUE(Compare(output, kNistKnown[known_index], AES_BLOCK_SIZE));
}
}
}
TEST_F(CmacAesTest, AesNistUnaligned) {
for (unsigned int key_index = 0; key_index < kNistKeyLengthsCount;
key_index++) {
unsigned int key_length = kNistKeyLengths[key_index];
ScopedCMACContext ctx(
CMAC_Create(CMAC_AES, kNistKeys[key_index], key_length));
ASSERT_NE(ctx, nullptr);
// Skip the zero-length test.
for (unsigned int plaintext_index = 1;
plaintext_index < kNistPlaintextLengthsCount; plaintext_index++) {
unsigned int known_index =
(key_index * kNistPlaintextLengthsCount) + plaintext_index;
unsigned int plaintext_length = kNistPlaintextLengths[plaintext_index];
// Test all possible offsets and make sure that misaligned updates
// produce the desired result. That is, do two updates:
// 0 ... offset
// offset ... len - offset
// and ensure the result is the same as doing one update.
for (unsigned int offset = 1; offset < plaintext_length; offset++) {
CMAC_Begin(ctx.get());
CMAC_Update(ctx.get(), kNistPlaintext, offset);
CMAC_Update(ctx.get(), kNistPlaintext + offset,
plaintext_length - offset);
uint8_t output[AES_BLOCK_SIZE];
CMAC_Finish(ctx.get(), output, NULL, AES_BLOCK_SIZE);
ASSERT_TRUE(Compare(output, kNistKnown[known_index], AES_BLOCK_SIZE));
}
}
}
}
TEST_F(CmacAesTest, AesNistTruncated) {
for (unsigned int key_index = 0; key_index < kNistKeyLengthsCount;
key_index++) {
unsigned int key_length = kNistKeyLengths[key_index];
ScopedCMACContext ctx(
CMAC_Create(CMAC_AES, kNistKeys[key_index], key_length));
ASSERT_TRUE(ctx != nullptr);
// Skip the zero-length test.
for (unsigned int plaintext_index = 1;
plaintext_index < kNistPlaintextLengthsCount; plaintext_index++) {
unsigned int known_index =
(key_index * kNistPlaintextLengthsCount) + plaintext_index;
unsigned int plaintext_length = kNistPlaintextLengths[plaintext_index];
// Test truncated outputs to ensure that we always get the desired values.
for (unsigned int out_len = 1; out_len < AES_BLOCK_SIZE; out_len++) {
CMAC_Begin(ctx.get());
CMAC_Update(ctx.get(), kNistPlaintext, plaintext_length);
unsigned int actual_out_len = 0;
uint8_t output[AES_BLOCK_SIZE];
CMAC_Finish(ctx.get(), output, &actual_out_len, out_len);
ASSERT_TRUE(actual_out_len == out_len);
ASSERT_TRUE(Compare(output, kNistKnown[known_index], out_len));
}
}
}
}