
Scratchbox 2 Internals 1

Scratchbox 2: Internals and Architecture
[for software versions 2.0 – 2.2]

Lauri T. Aarnio

1st Edition, April 25, 2012.

Copyright (c) 2009-2012 Nokia Corporation.
This work is made available under the terms of the Creative Commons Attribution-
ShareAlike 3.0 Unported license, http://creativecommons.org/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/3.0/


Scratchbox 2 Internals 2

Table of Contents
Preface to the first (public) edition....................................................................................................... 3
Foreword and Introduction to Scratchbox 2.........................................................................................4
1. Scratchbox 2, a Cross-Compilation Toolkit..................................................................................... 5

1.1 Related components: Other building blocks for a complete SDK.............................................5
1.2 A bit of history: Scratchbox 1 vs. Scratchbox 2.........................................................................8

2. Operation of Scratchbox 2................................................................................................................9
2.1 Targets and Sessions: User-level virtualization in practice.......................................................9
2.2 Typical workflow and the various mapping modes................................................................. 11
2.3 Processing of pathnames (“mapping” of files)........................................................................ 12
2.4 Execution of programs.............................................................................................................15

3. Interfaces........................................................................................................................................ 18
3.1 Command-line interfaces.........................................................................................................18
3.2 Application (binary) interface..................................................................................................19

4. The Rule Engine: Internal Configuration of Scratchbox 2.............................................................21
4.1 Path mapping rules...................................................................................................................21
4.2 Exec policies and execution rules............................................................................................23
4.3 Testing out and displaying the results of mapping...................................................................24

5. Scratchbox 2 “core”: The Preload Library..................................................................................... 26
5.1 The interface layer................................................................................................................... 28
5.2 File system operations subsystem............................................................................................28
5.3 Exec Subsystem....................................................................................................................... 29
5.4 Internal databases: The ruleset and the open file descriptor table...........................................30
5.5 Supporting routines: Logging, initialization etc...................................................................... 30

6. Native Binaries, LD_PRELOAD and Scratchbox2........................................................................31
6.1 Static binaries...........................................................................................................................31
6.2 Challenges caused by the dynamic linker (ld.so).................................................................... 32
6.3 Built-in absolute pathnames in glibc....................................................................................... 33
6.4 Versions of glibc and target-specific Scratchbox 2 core libraries............................................33



Scratchbox 2 Internals 3

Preface to the first (public) edition
This document was originally written for developers of software development kits (SDKs). It  was 
mainly targeted to our internal audience at Nokia, while an alternative Scratchbox 2 -based SDK 
was being developed for the Maemo devices. 

Our intention was to release this document to the  Scratchbox 2 community at the same time with 
the final release of Maemo SDK+. However, in February 2011 priorities of many things changed, 
especially things which were related to Maemo/MeeGo operating systems. One side-effect was that 
the development of  the SDK+ stalled. 

But Scratchbox 2 itself has always been independent of the target environments. It is being used as 
a platform for development environments for several Linux-based systems, like Tizen, the Mer 
project, the Raspberry Pi, and WebOS, to name a few. 

Also, we have used Scratchbox 2 as a platform for analyzing SW package build process behavior. 
For example, the latest development versions can create process call hierarchy graphs, and can be 
used to alter network addresses as well as create alternative file system namespaces. Scratchbox 2 
has been proven to be a versatile tool for solving certain type of environment virtualization 
problems with Linux.

This is the first public edition of Scratchbox 2 Internals and Architecture. It still refers mostly to 
software versions 2.0 – 2.2. 

At the time of writing this preface, 2.2.4 is the latest stable version of Scratchbox 2, but the next 
stable major release, 2.4, is not necessarily too far in the future. I have added some short notes 
[written in italics] to places where there are notable changes in the development branch: The latest 
development version, 2.3.52, contains some new features, and some old ones have been rewritten 
for better performance and scalability.

Lauri T. Aarnio
lauri.t.aarnio@nokia.com

Helsinki, Finland



Scratchbox 2 Internals 4

Foreword and Introduction to Scratchbox 2
Documenting a system as complex as Scratchbox 2 is not an easy task. Lauri Aarnio has 
demonstrated amazing endurance in coming up with ways to express the complicated inner 
workings, this process has also served in clarifying even to ourselves the reasons and the true nature 
of many of the mapping engine peculiarities. This paper is not an easy read by any means, and it 
cannot be really recommended as a beginners guide to using Scratchbox 2, but it is definitely 
invaluable for anyone who wants to understand it, and hopefully serves well those who wish to 
contribute to it.

Scratchbox 2 is a continuation of Scratchbox 1 in terms of approach to solving cross-compilation 
challenges, even if it isn't 100% compatible and differs greatly in the implementation. The topic of  
cross-compilation is convoluted. Looking at the most basic scenario, where one is using a compiler 
that produces output to a different hardware architecture than the one it's running on, it becomes 
primarily a task of making sure the right compiler is being used to build all of the code, and that it  
finds headers and libraries that belong to the target system instead of the host.

Elaborating this further, various build systems have configuration settings for the program being 
built, sometimes these are hard-coded in the Makefiles, sometimes taken from environment 
variables or using some utility to detect things about the build or target environment. Especially the 
very popular open source configuration tools under the Autotools umbrella make heavy use of 
automatically detecting library versions, function existence, paths to utilities and their versions,  
include and library paths etc. Autoconf compiles small test snippets and sometimes even executes 
the resulting binaries while detecting target system capabilities.

Next level of escalation is then managing the target build environment on the host machine. For 
Maemo this means implementing a mechanism for installing and updating target components from 
the debian repositories and also making sure the host system has build tools that are compatible 
with what the target system requires.

All of these need to be tackled in order to have a functioning development environment. Scratchbox 
2 does this by disguising the host system so that it appears as the target system, while retaining the 
ability to execute the host tools. This dualism requires quite substantial workarounds at times to 
control where each file is accessed from in order to maintain the illusion of being the target, while 
providing the functionality of the host.

Lauri Leukkunen
Founder of the Scratchbox2 project



Scratchbox 2 Internals 5

1. Scratchbox 2, a Cross-Compilation Toolkit

Scratchbox 2 is a non-traditional solution to the cross-compilation problem: 

Scratchbox 2 is used to create a virtual, native-like development environment. In other words, it 
makes a development machine look like a virtual target system to the software development tools.

The design of Scratchbox 2 is based on the following principles:

• Flexibility: The system is highly configurable. Rulesets can be used to define the level and 
nature of the virtualization.

• User experience: The virtual development environment should let the user access “best of 
both worlds” with minimal disturbance: The virtual environment should resemble the target 
system as closely as possible, and the user should also have seamless access to the 
development host.

• Performance: Scratchbox 2 should have minimal effect on performance. Usually 
virtualization introduces some performance penalties, and so does Scratchbox 2. But the 
design enables use of the fastest possible tools whenever possible: Tools that are 
architecture-neutral can be executed as host-architecture-compatible binaries, while binaries  
which depend on being executed on the target system will find themselves running on a 
target-like environment, engaging target CPU emulation only if needed. This is completely 
transparent to the user and to the build process.

• Security: Scratchbox 2 does not need any special privileges or kernel-level services; it is 
completely based on features that are available for all ordinary users in Linux systems.

• Concurrency: A single user may have several sessions open at the same time (each session 
may or may not share configuration and data with the other sessions), and naturally several 
users can use Scratchbox 2 on the same host without interfering each other.

Scratchbox 2 works on the Linux OS; both the host and the target are currently expected to be 
Linux systems. The host computer can be an ordinary Linux PC (32- or 64-bit intel-based 
architecture), while the supported target architectures include ARM, PPC, MIPS, x86 and SH.

It should be noted that Scratchbox 2 is not an SDK (software development kit) itself. Instead, it is a 
cross-compilation toolkit; an engine which can be used to build SDKs. 

1.1 Related components: Other building blocks for a complete SDK

An SDK typically consists of several parts in addition to Scratchbox 2 (fig 1):

• First, a cross compiler and related tools (assembler, linker, etc.) are needed.

• Second, a target file system containing all target-specific libraries, header files, etc. is  
mandatory. This is nicknamed “the rootstrap”, as it is usually a copy of target device's root 
filesystem.

• Third, usually a set of build tools is also needed. A common mistake is to think that a cross-



Scratchbox 2 Internals 6

compiler would be enough to create binary programs for the target; this is not the case 
especially with existing OSS (Open Source Software) projects. Typically a set of ca. 100 
other tools are needed for successful building of an OSS project (See fig. 2. for an example)

• Fourth, a target hardware emulator is needed, if the target CPU architecture is not directly 
compatible with the host CPU. Qemu, an open source hardware emulator is typically used 
for this task. Qemu is used in so-called “user mode”, which only emulates the CPU. Target 
hardware or complete system is not emulated, instead it translates target's system calls to 
calls to host system's kernel.

• An IDE is typically added to be used as the user interface. 

• Also, the complete SDK needs administrative tools: Tools for installing it, maintaining 
versions of the above components, etc.

Scratchbox 2 is the “glue” which binds all of the above components together and creates a working, 
virtual development environment.



Scratchbox 2 Internals 7

Fig. 1. Scratchbox 2 as an SDK core engine

Host OS tools (typically not used)

Generic Tools
Collection
- needed for building
  of open-source sw.
- shared among
  users
- read only

Target Tools
Collection
(compilers, binary
creation tools)
- shared  among
   users
- read only

Target device
filesystem image,
“Rootstrap”
- private for each user
- R/W for emulation,
  typically R/O during
  development phase

Virtualized Development Environment

Host OS kernel (compatible Linux OS)

Scratchbox 2:
the virtualization
platform

User's workdir
- private
- R/W

Virtual Execution Environment

Virtual FS view
(created by SB2)



Scratchbox 2 Internals 8

Fig.2. Typical set of tools for a Debian Linux based SDK.

1.2 A bit of history: Scratchbox 1 vs. Scratchbox 2

Scratchbox 2 is not a direct replacement of Scratchbox 1, it can be used to fulfill the same function,  
but Scratchbox 2 provides a much more flexible and easier to maintain implementation.

As an example, a minimal Scratchbox 2 installation 

• takes less than a megabyte (minimal Scratchbox 1 is around 100 megabytes),

• does not require super user rights (e.g. does not depend on kernel's binfmt_misc feature, no 
need to mount (or bind mount) directories, and does not use chroot system calls – 
Scratchbox 1 requires all of those) 

• and out of the box supports multiple simultaneous sessions for different target 
configurations. providing basic cross-compilation support.

A more complete development environment requires a controlled set of build tools, which 
Scratchbox 2 supports independently of the host machine's distribution by letting the user to specify 
a directory from which all binaries are used and executed from.

Generic Host Tools:
bc
binutils
bison
byacc
cpio
dc
ed
fakeroot
file
flex
flex-old
gawk
gzip
m4
make
mawk
pkg-config
procps
realpath
sed
sharutils
tar

Debian Build System:
cdbs
dbs
debhelper
debianutils
debmake
dh-buildinfo
dpatch
dpkg
po-debconf
quilt

GNU autotools:
autoconf
autoconf2.13
automake
automake1.4
automake1.7
automake1.8
automake1.9
automake1.10
automaken
autotools-dev
libtool

Documentation Tools:
docbook-dsssl
docbook-to-man
docbook-xml
docbook-xsl
groff
gs
gs-common
gtk-doc-tools
jade
libpaper-utils
linuxdoc-tools
netpbm
psutils
sgml-base
sgml-data
sgmlspl
sp
tetex-base
tetex-bin
tetex-extra
texi2html
texinfo
xml-core
xmlto

Gnome:
gnome-pkg-tools

“The basement”:
build-essential
GCC and friends, etc! Localization:

defoma
gettext
intltool

Perl:
libcompress-zlib-perl
libdigest-md5-perl
libhtml-parser-perl
libhtml-tagset-perl
libmime-base64-perl
libnet-perl
libtimedate-perl
liburi-perl
libwww-perl
libxml-parser-perl
perl
perl-base

+ a few dozen other
tools that didn't fit

to this picture !
(including python!)



Scratchbox 2 Internals 9

2. Operation of Scratchbox 2
Operation of Scratchbox 2 is heavily based on applying rules, which define the composition of the 
virtual environment. There are two types of rules: File system rules are used to define how the file 
system appears to the applications, and execution rules can be used to alter the way how 
applications are started. [version 2.3 has added a third set of rules for limited network address  
translation capabilities]

Several ready-made rulesets are distributed together with the software, so that the user usually 
doesn't have to modify or add any rules. However, an SDK which is based on Scratchbox 2 may 
include additional rulesets for special purposes – the system is easily  configurable and relatively 
easy to maintain without making changes to the software itself.

Scratchbox 2 has been designed to operate completely as an user-level solution: That is, no special 
permission or special kernel-level services are required when executing programs in Scratchbox 2. 
It is even possible to install it so that no protected directories or files are affected.

This chapter will present an overview of the Scratchbox 2 environment from the user point of view. 
Chapters 3, 4 and 5 contain slightly more detailed view of configuration, interfaces and internals.

2.1 Targets and Sessions: User-level virtualization in practice

The two most important concepts are target and session1. 

A target is simply a symbolic name for a configuration set. A target does not contain anything that 
is active, like running processes; hence a user never "works inside a target”. Instead, sessions are 
used for all active operations - always, even if the users don't notice them2. In the simplest case, the 
target contains everything that is needed to create a session.

In practice, the target contains configuration for the cross-compiler, location of the target root file 
system, cpu transparency method and the tools collection. These settings are only read when a 
session is created. After that all configuration information comes from the session.

Naturally, it is possible to have multiple sessions open in parallel, all based on the same target, all  
sharing more or less from the configuration which was initially read from the target settings. Some 
noteworthy things about sessions are that

• The target root file system is usually shared between sessions that were created from the 
same target. If contents of it are changed from one session, the changes are visible in the 
other sessions also (but this is not a rule:There are some exceptions; private, temporary 
target roots can also be used)

•  The /tmp directory is usually private to each session.

The session's configuration determines how the development environment is presented to the user: 
A virtual file system view3 is created, and also the execution of other programs is enhanced: 
Binaries for the target system can be executed on the host computer. The principle is presented  in 
Fig.3. 

1 A note for users who are familiar with the older Scratchbox 1; “targets” were also used with that, but here the 
definition is slightly different. And a session is a new concept; somewhat similar to the “login shell” of SB1, but 
SB2's sessions are more flexible.

2 It is also possible to explicitly create sessions for more complex use cases: those are called "persistent sessions".
3 Scratchbox2 creates virtual file system views, it does not introduce any real virtual filesystems. The former can be 

done as an user-level service, while the latter usually requires kernel-level support (remember that the Scratchbox 2  
does not require or introduce any special kernel-level services)



Scratchbox 2 Internals 10

Fig.3. Sessions and execution of foreign binaries inside the session.

Three kind of processes can be seen in fig.3: Host binaries, incompatible target binaries and 
architecturally compatible, but environmentally incompatible binaries. Scratchbox 2 takes care of  
execution of all these cases transparently (there is more about program execution in ch. 2.4)

OS Kernel (Linux)

Standard System Call Interface

Target CPU
emulation

engine
(Qemu)

Process 2
(target binary)

Environment Virtualization Layer =
      “ScratchBox 2.0 Core”:                      
Creates a Virtual File System View and
enables execution of foreign binaries

Rules for
file system

and program
execution

Process 1

Target CPU
emulation

engine
(Qemu)

Process 2
(target binary,

foreign CPU arch.)

Process 1
(Host OS binary,
host CPU arch.)

Libraries etc.
from the same

tools distro

Process 3
(from a tools distro,
same CPU arch. as

host binaries)

Scratchbox 2: Session 2

Target CPU
emulation

engine
(Qemu)

Process 2
(target binary)

Environment Virtualization Layer =
      “Scratchbox 2 Core”:                      
Creates a Virtual File System View and
enables execution of foreign binaries

Rules for
file system

and program
execution

Process 1

Target CPU
emulation

engine
(Qemu)

Process 2
(target binary,

foreign CPU arch.)

Process 1
(Host OS binary,
host CPU arch.)

Libraries etc.
from the same

tools distro

Process 3
(from a tools distro,
same CPU arch. as

host binaries)

Scratchbox 2: Session 1

Different sessions
may use different
rulesets



Scratchbox 2 Internals 11

2.2 Typical workflow and the various mapping modes

Scratchbox 2 enforces a practice where software development and execution environments are 
separated. Especially for embedded devices these two have very different requirements: It is quite 
important to understand that all components that are present in the development environment (see 
fig.2) are not present in the actual execution environment (the device), and they should not be 
present in the emulated execution environment, either.

Fig.4 presents a typical workflow in the Scratchbox 2-created cross-compilation environment. The 
first two tasks (developing and building) are executed in a development environment, while 
installation and testing happen in the execution environment.

Scratchbox 2 creates different enviroments by using different rulesets (compare with fig.3). The 
rulesets are called mapping modes, as they determine how the files and processes are mapped to the 
virtualized environment.

Fig.4. A typical software developer's workflow.

2.
Build/Compile
the program

(cross-compilers,
various other

tools)

1.
Write the code

(editors, IDE,...)

3.
Install the program
Typically requires

admin rights to the
target “device”

4.
Execute the program

(incl. debugging).
No admin permissions

are needed
(usually)

Blue: Development Environment: A full-featured Linux system, with full 
set of development tools

Yellow: Execution Environment: A limited Linux system, resembing
the target device as closely as possible.

Scratchbox 2 creates this
with a development-
oriented ruleset (e.g. “simple”,
“devel”, “accel”)

Scratchbox 2 
creates this
with an execution-
oriented ruleset
(e.g. “emulate”)

Typical workflow when developing embedded software with Scratchbox 2:



Scratchbox 2 Internals 12

The distribution includes mapping modes for both the development and execution use cases: 
emulate is the target system emulation mode which should be used when installing programs to the 
target root file system and executing them (yellow area in fig.4). For development (blue side of 
fig.4), three modes are available: simple4, devel5 and accel6. [devel has been removed from version  
2.3; instead, the name devel is an alias and activates the accel mode]

Targets are usually created so that one of the development modes is the default mapping mode, but 
a session can also be created so that it uses another mapping mode. For example, the emulate mode 
needs to be explicitly activated when the “yellow tasks” of fig.4 are needed.

Although it is possible that the users (or the SDK developers) may introduce their own rulesets, the 
intention is that the ready-made rulesets that are distributed with Scratchbox 2 should be enough for 
most purposes and no customization should be necessary.

2.3 Processing of pathnames (“mapping” of files)

Scratchbox 2 builds the virtual file system by changing the paths to files before the paths are given 
to the operating system. Probably the most typical conversion is that a path prefix is added to the 
path which was provided by the application.

For example, when an application calls open() to open file /etc/timezone, Scratchbox 2 captures the 
parameters and changes the path to point to different destination. Typically, the mapping rules may 
cause it to be mapped to the target root: A prefix will be added to the path, and the real file which 
will be opened might be /home/user/rootstrap/etc/timezone7. This happens inside the Scratchbox 2 
core, so the process which called open() does not notice anything.

Fig.5 presents a simplified example: A development-oriented mapping mode. Five rules, 
represented by red arrows, can be seen in the picture: Two path prefixes are mapped to the tools 
(/bin and /usr/bin) and two to the target root (/lib and /usr). Additionally, home directories are not 
mapped at all; /home from the host is also available in the virtual FS view.

Fig 6. contains a setup where mapping has been configured to create an emulated target 
environment. In that case almost everything will be mapped to the target root.

In practice, about a dozen rules is the minimum that is needed to create a working environment. A 
few more, and the environment can be said to be even a comfortable place to work8 – even more 
comfortable than what a chroot-based development environment could ever be. However, there are 
tools that require more than what was possible with the basic setup - for example, a configuration 
file which belongs to a tool might need to be mapped with a separate  rule to the “tools” directory,  
even if every other file in the same directory will be mapped to the target root. The result was that 
the “devel” mode, which tries to support a fairly large set of tools (see fig.2) now contains a few 
dozen rules.

4 simple supports the most common development tools, but does not cover more complex cases (e.g. some GUI-
releated tools or building extensions for scripting languages like perl and python can not be done in the simple 
mode). Most tools come from the host OS environment in this mode.

5 devel is a more complete development mode, supporting a larger set of development tools, and also some backward-
compatibility rules for compiling packages that have unnecessary dependencies to the Scratchbox 1 environment.  
The downside is that it is also a lot more complex. This is mostly intended to be used when developing for a debian-
based Linux distribution, with a separate toolset (which can be taken from e.g. Debian Linux)

6 accel is a devel-like mode, but assumes that the development tools have been compiled from the same sources as 
what the target file system contains (e.g. target might consist of ARM binaries, tools consists of x86 binaries of 
exactly the same programs). This has proven to be a better solution than what could be done with the devel mode.

7 The exact location of the target root file system is of course a configurable item. /home/user/rootstrap is used here 
just to keep the examples simple and easy to read.

8 This is what the “simple” mapping mode is trying to accomplish.



Scratchbox 2 Internals 13

Fig.5. Mapping of pathnames (development-oriented mode, simplified example)

Scratchbox 2 can do mapping to both directions: In most cases forward mapping is used (e.g. the 
red arrows in figures 5 and 6 represent forward mapping), but there are cases where reverse 
mapping is performed:

For example, if the application uses the chdir() function to change the current directory to /usr/bin, 
the mapping engine might change the path to either /opt/tools/usr/bin (if a development-oriented 
ruleset is active: fig.5) or /home/user/rootstrap/usr/bin (device emulation active: fig.6) and relay 
that path to the operating system. However, In the opposite case, when the application then wants to 
get the current directory with e.g. getcwd() function, the system first reports the real path 
(/opt/tools/usr/bin or /home/user/rootstrap/usr/bin) to the Scratchbox 2 mapping engine, which 
reverses the mapping and returns /usr/bin to the application.

/

opt

tools
“/”

bin

Development Environment:
Virtual File System View (created by Scratchbox 2)
this is what the application process experiences

Host Computer:
Real File System
this is what really
gets accessed.

home

rootstrap
“/”

lib

user

usr

workdir

project

/

libhome bin

usr

bin

usr

bin

usr



Scratchbox 2 Internals 14

Fig.6. Mapping of pathnames (device emulation mode, simplified example)

Also, one extremely important detail that is worth noticing is the handling of symbolic links.

Suppose that the user has created a symbolic link to the “project” directory: If 
/home/user/workdir/project/bake is a symbolic link to /usr/bin/make, then what happens when the 
user executes “bake” from the project directory completely depends on the mapping mode:

1. In the development-oriented mode (fig.5), Scratchbox 2 interprets the link and maps 
references to /home/user/workdir/project/bake to /opt/tools/usr/bin/make. 

2. In the target emulation mode (fig.6), Scratchbox 2 interprets the link and maps it to 
/home/user/rootstrap/usr/bin/make.

3. If the user examines the link outside of the session, the link of course points to the system's 
real /usr/bin/make.

In general, handling of symbolic links and other path-related algorithms are explained in the 
path_resolution manual page of Linux. Scratchbox 2 follows the guidelines explained there while 
performing the path mapping operations, so that file system access semantics are preserved. 

/

opt

tools
“/”

bin

Host Computer:
Real File System

home

rootstrap
“/”

lib

user

usr

workdir

project

/

usr

home

usr

bin

Emulated Target Environment:
Virtual File System View (created by Scratchbox 2)

default mapping rule maps
almost everything to the
rootstrap



Scratchbox 2 Internals 15

2.4 Execution of programs

For host-compatible binaries, Scratchbox 2 is completely transparent from the process point of 
view: “Ordinary” programs don't need any kind of special treatment (like recompilation or 
preprocessing) to work in the Scratchbox 2 environment. It uses a library preloading mechanism 
internally, which means that references to symbols that normally belong to the operating system's 
libraries can be redirected to the Scratchbox 2's preload library for additional processing. The result 
is that Scratchbox 2 is directly compatible with almost all binary programs.

This mechanism requires that the executable is a dynamically linked binary and not a statically  
linked one. Fortunately dynamic linking is the default in Linux, and there are only a few exceptions 
where static linking is needed. 

See fig.7. for an example: It presents how an architecturally compatible, dynamically linked binary 
can be executed either inside the session or completely outside of Scratchbox 2. 

There are currently two ways how statically linked binaries can be handled: First, special wrappers 
have been developed for the most common cases where a statically linked binary is used, and 
Scratchbox 2 will log a warning message if/when such programs are  executed [this was the only 
option for versions 2.2 – 2.2.3]

Newer versions have an alternative: Version 2.2.4 [also, 2.3.4+] support execution of statically 
linked host's binaries by running them with a second Qemu9, using same principles which are 
applied to incompatible target CPU architectures.

For incompatible CPU architectures, i.e. if the target architecture is not compatible with the host 
architecture, the situation becomes slightly more complex: A CPU emulator must be used. This is  
presented in fig. 8.

Use of the CPU emulator is also transparent to the user and to the running processes: Scratchbox 2 
extends the way how programs are started by first examining the program that will be executed and 
applying rules that might change or modify parameters before the actual exec-operation is 
performed. For example,  

• Host OS binaries are easy: They see the virtual file system view, but otherwise everything 
tends to be similar to the host OS environment.

• Binaries, which are compatible with the host CPU but are not compiled for the host Linux 
distribution need to use special startup trick, so that it is possible to specify a non-standard 
location of the dynamic libraries that will be used. This applies to a situation where the 
target system uses same CPU architecture as the host, as well as setups where the cross-
compilation tools are used from a different Linux distribution than what is used on the host.

• The third case concerns execution of incompatible binaries, i.e. when a CPU emulator is 
needed (fig.8). 

The result is that when a program needs to be executed, everything just works “magically” - even 
between different kinds of executables inside Scratchbox 2 : For example, binaries compiled for the 
x86 architecture can use the standard execl()10 function to start a binary which has been compiled 
for the ARM target.

9  This feature was developed at Samsung – many thanks to Rafał, Mike and Karol!

10 or one of the other six exec variants.



Scratchbox 2 Internals 16

Fig.7. Execution of host-architecture-compatible binaries

A process running inside
a Scratchbox 2 session

OS Kernel (Linux)

Standard System Call Interface

A “normal” process running
outside Scratchbox 2

Executable (binary)

C Library

Executable (binary)

Scratchbox 2 preload
library

C Library

library calls related
to files and program
execution

All library calls
Other
library calls

library calls, where
parameters may be
modified



Scratchbox 2 Internals 17

Fig.8. Execution of target device binaries (incompatibe CPU architecture)

CPU Transparency of Scratchbox 2:
A foreign executable = Target binary running inside
a Scratchbox 2 session
(e.g. an ARM binary, when the host is an ordinary
x86-based Linux PC)

OS Kernel (Linux)

Standard x86 System Call Interface

User-mode Qemu (x86 binary)

C Library

Scratchbox 2 preload
library

library calls related to files and program
execution

Other
library calls

library calls, where
parameters may be modified

Libraries (ARM version of the C library etc).

Standard Linux/ARM system calls

Executable (ARM binary)

Qemu translates system calls from the ARM binary to calls to
host's C library. Scratchbox 2 will intercept part of those:

ARM application

Qemu is
invisible to
the application



Scratchbox 2 Internals 18

3. Interfaces
Most of the time Scratchbox 2 operates in the background. Some SDK implementations may decide 
to hide it completely from the user; alternatively the user might see that Scratchbox 2 is being used 
if direct access to the command line interface tools is allowed. From the application point of view,  
Scratchbox 2 is practically completely hidden: It works by modifying how standard C library calls 
work. The binary interface only contains calls that are 100% compatible with the existing binary 
interface standards (e.g. POSIX and glibc ABI), so no Scratchbox 2 specific functions are available.

The next chapters present the basics about the command line interface and the application binary 
interfaces.

3.1 Command-line interfaces

Command line interface consists of tools for creating and configuring the targets and sessions (sb2-
init, sb2-config and sb2), some diagnostic tools (sb2-show, sb2-logz) and wrappers for some 
software development tools that need to be extended to work effectively in the virtualized 
environment.

The “sb2-init” command is used to create the targets. It must be used once for each target. In the 
simplest case, sb2-init needs just two parameters: Name of the target to be created and path to the 
cross compiler:

$ cd target_root_directory
$ sb2-init ARM_target /opt/tools/bin/arm-linux-gcc
(many messages from the configuration process, and finally:)
sb2-init completed successfully, have fun!

Example: using sb2-init to create a target called “ARM_target”.

Various options are available for fine-tuning operation of sb2-init. For example, -m devel can be 
used to set the default mapping mode to devel (the default is simple). Use sb2-init --help to 
display a full list of available options.

The “sb2-config” command is used to select the default target and configure some target-specific 
settings. See the manual page for details.

The “sb2” command creates a session. This is the tool which will be used most, after the target has 
been configured.

In the simplest form, it needs no parameters: sb2 will create the session and start a shell, which can 
be used to execute commands in the virtualized development environment:

$ sb2                  <- (This command will create the session)
[SB2 simple ARM_target] lauri@sbox2 workdir $
Notice how the shell prompt has been changed to include the mapping mode (simple), target name 
(ARM_target), user and host name and current directory name (workdir).

Example: using the sb2 command to create a session.

Alternatively, if a command is provided as parameter, that command will be executed inside a  
session. The following example shows how the system's architecture is reported inside the session 
and how it differs from the real architecture:



Scratchbox 2 Internals 19

$ sb2 uname -m          <- (This creates session and executes “uname” in it)
arm
$ uname -m              <- (This executes “uname” in the host)
x86_64

Example: using the sb2 command to check host architecture.

Operation of sb2 can be controlled by command-line options. Options -e and -R are the most 
important ones: -e is a shortcut to the emulate mode, and -R activates a fakeroot-like environment 
with simulated administrator (root) privileges. [versions 2.2 actually activate “fakeroot” when -R is  
used, but 2.3.40 and later ones have a built-in replacement: sb2 got a more comprehensive virtual  
permission subsystem]

 When used together, these two options also provide read/write access to the target root:

$ sb2 -e               <- (Create a session, using the “emulate” mapping mode)
[SB2 emulate ARM_target] lauri@sbox2 workdir $

$ sb2 -eR              <- (Create a session, “emulate” mapping mode + simulated root rights )
[SB2 emulate ARM_target] root@sbox2 workdir $

Example: Creating a session using the “emulate” mode.

Use sb2 --help to display a full list of options.

Other command-line tools include “sb2-show”, a diagnostics tool (see ch. 4.3), and “sb2-logz”, a 
log analyzer and summary generator. Scratchbox 2 includes extensive logging abilities: When the 
session is created with the -d flag (debug), every file access will be logged. Typically, the log grows 
really fast and can become huge. sb2-logz helps by summarizing information from the log.

3.2 Application (binary) interface

For the applications, Scratchbox 2 is completely transparent.

Table 1 presents a list of functions that are intercepted by the Scratchbox 2 core. Most of these are 
standard POSIX file system operations, in addition the table lists also Glibc extensions that are 
specific to Linux only (names of such functions usually begin with an underscore).

[version 2.3 intercepts a few dozen more: The virtual permission subsystem affects how getuid(),  
setgid() etc work, and these are not included in table 1. A comprehensive list can be found from  
manual page libsb2_interface(7)] 

Note that Scratchbox 2 operates on the binary interface level. Applications are not recompiled for it.  
Part of the Glibc- or Linux-specific functions listed in table 1 are present because the binary 
interface to Glibc is not necessarily the same as the function which appears in the source-level API. 
For example, a call to the stat() function in the source tends to be changed to a call to __lxstat().  
The user of Scratchbox 2 does not have to worry about these details, but the developers of it have 
spent quite many hours figuring out how the Glibc library works internally.



Scratchbox 2 Internals 20

Table 1. API/ABI calls

dcgettext
dcngettext
dgettext
dlmopen
dlopen
dngettext
dup
dup2
eaccess
euidaccess
execl
execle
execlp
execv
execve
execvp
exit
faccessat
fchmod
fchmodat
fchownat
fcntl
fcntl64
fopen
fopen64
freopen
freopen64
fstatat
fstatat64
fts_open
ftw
ftw64
futimesat
get_current_dir_name
getattrlist
getcwd
getpeername
getsockname
getwd

__fxstatat
__fxstatat64
__getcwd_chk
__getwd_chk
__lxstat
__lxstat64
__open
__open64
__open_2
__open64_2
__openat_2
__openat64_2
__opendir2
__readlink_chk
__readlinkat_chk
__realpath_chk
__recvfrom_chk
__xmknod
__xmknodat
__xstat
__xstat64
_exit
_Exit
_xftw
_xftw64
access
accept
acct
bind
bindtextdomain
canonicalize_file_name
chdir
chflags
chmod
chown
close
connect
creat
creat64

getxattr
glob
glob64
glob_pattern_p
inotify_add_watch
lchmod
lchown
lckpwdf
lgetxattr
link
linkat
listxattr
llistxattr
lremovexattr
lsetxattr
lstat
lstat64
lutimes
mkdir
mkdirat
mkdtemp
mkfifo
mkfifoat
mknod
mknodat
mkstemp
mkstemp64
mkstemps
mkstemps64
mktemp
nftw
nftw64
open
open64
openat
openat64
opendir
pathconf
popen

readlink
readlinkat
realpath
recvfrom
recvmsg
remove
removexattr
rename
renameat
revoke
rmdir
scandir
scandir64
sendto
sendmsg
setattrlist
setrlimit
setrlimit64
setxattr
stat
stat64
symlink
symlinkat
system
tempnam
textdomain
tmpnam
truncate
truncate64
ulckpwdf
uname
unlink
unlinkat
utime
utimensat
utimes
wait
waitpid

Public API/ABI calls intercepted by Scratchbox 2
(eglibc



Scratchbox 2 Internals 21

4. The Rule Engine: Internal Configuration of Scratchbox 2
The rule engine is a central part of Scratchbox 2. While the user usually doesn't have to write or 
modify any rules (in fact, a normal user is not expected to even see rules ever), it is still useful to 
understand the effect of the rules: They define how Scratchbox 2 works, after all.

There are two kinds of rules: Path mapping rules and execution rules. The former are used every 
time when a file is accessed by name, while the latter are used only when processing the execution-
related library calls (execl(),etc). All rules are expressed in the Lua scripting language. It is a 
relatively small, embeddable language which provides both a nice way to store the configuration 
data and to write small extensions to the Scratchbox 2 logic. For more information about Lua, 
please see www.lua.org or the book Programming in Lua.

[version 2.3 has a third set of rules, for network address translation]

[version 2.3 contains some important changes to rule engines: Older versions loaded all rules  
when a process started inside a session, while the 2.3 loads rules only once when session is created  
and converts them to a binary format, which is then mapped to every process' memory space with  
mmap(). Some changes had to be done to the rule files (and syntax) because of this, but all basic  
principles presented in this chapter still apply to the newer SW versions.]

4.1 Path mapping rules

Path mapping rules define how source paths (as specified by the application) are converted to 
destination paths (real paths that are used by the operating system).

The basic mapping algorithm consists of two steps:

First, the rule needs to be identified. The ruleset contains basically a set of rule lists, that have been 
organized to a rule tree. This step utilizes fairly standard tree and list lookup algorithms, where the 
source path is the key. While going thru the rules, the first matching one is selected. 

A rule selector specifies what kind of match is required:

• exact match requires that the source path is exactly the specified string, for example: 
path = “/etc/passwd”

• prefix match compares string prefixes: For example, if the requirement is 
prefix = “/usr/bin/perl” 

then both “/usr/bin/perl” and “/usr/bin/perl5.8.8” will match.

• a directory match is a special form of the prefix match: It will match only if the specified 
string is either the source path, or a full directory prefix of it. For example, if the requirement 
is 

dir = “/usr/lib/perl” 
then both “/usr/lib/perl” and “/usr/lib/perl/foo” will match, but 
“/usr/lib/perl5” won't match.

Next, the selected rule needs to be applied. The rule also contains an action, which specifies how to 
create the destination path from the source path. There are four simple cases, where the destination 
path is directly deduced from the source path:

• use_orig_path = true
specifies that the path doesn't need to be changed at all; destination path will be the same as 
the source path, but symbolic links in the path are still resolved (as specified in the path 
resolution specification)

http://www.lua.org/


Scratchbox 2 Internals 22

• force_orig_path = true
is otherwise like the previous action, but it also forces symbolic link resolution to be 
stopped. There are a few special cases where this is necessary.

• map_to = “/path”
specifies that the destination path will be the same as the source path prefixed with “/path”.

• replace_by = “/path”
specifies that the destination path will be created by replacing the matching part, which was 
used to select the rule with “/path”.

Additionally, there are conditional rules that require additional conditions to be true before the rule 
is applied. These are needed to be able to correctly process some special cases, like operation of 
extendable scripting languages (perl and python) or selecting files based on existence of the file at  
one of several possible destination directories. These are not presented in detail here; refer to the 
source code whenever needed.

Consider the following examples:

{prefix = "/usr/lib", map_to = target_root}

Example: mapping rule 1.

The rule above maps all source paths that begin with /usr/lib to the target root file system (variable 
target_root contains the location of the target root file system). If target_root contains 
“/home/user/rootstrap”, then the following mappings will be done due to this rule:

Source path Destination path

/usr/lib/libxyzzy.a /home/user/rootstrap/usr/lib/libxyzzy.a

/usr/lib (the directory itself) /home/user/rootstrap/usr/lib 

/usr/lib123/libfoo.a /home/user/rootstrap/usr/lib123/libfoo.a

Example: Results of applying rule 1.

Notice that the since a string prefix match was used to select the rule, it applies to both “/usr/lib” 
and “/usr/lib123”. Sometimes that might not be what is wanted – it might be better to use a “dir” 
rule instead:

{dir = "/scratchbox/tools/bin",
 replace_by = tools .. "/usr/bin", log_level = "warning"}

Example: mapping rule 2.

Rule 2 maps all source paths that refer to directory /scratchbox/tools/bin to /usr/bin of the tools 
collection, replacing the directory prefix of the original path. (Note: the “double dot” operator of  
Lua is used for concatenating strings)

Assuming that variable tools contains “/opt/tools”, then the following mappings can be done due to 
the example rule 2:

Source path Destination path

/scratchbox/tools/bin/foo /opt/tools/usr/bin/foo

/scratchbox/tools/bin/subdir/bar /opt/tools/usr/bin/subdir/bar

Example: Results of applying rule 2.

This rule is an actual example of an Scratchbox 1 compatibility rule. The old Scratchbox 1 used to 



Scratchbox 2 Internals 23

keep tools in subdirectories under the /scratchbox directory hierarchy; it was a convention that is 
fully specific to Scratchbox 1 and should not be used explicitly. Scratchbox 2 does not use that 
practice at all. Instead, Scratchbox 2 enforces standard practices whenever possible – for example, 
tools are located under the /bin and /usr/bin directory hierarchies.

However, we have noticed that there are nowadays source packages that contain absolute 
pathnames referring to files and directories that exists only in Scratchbox 1. Some of these are now 
supported by compatibility rules, so that the packages can be built also with Scratchbox 2. The rules 
also contain an additional attribute log_level = "warning", which adds a warning message 
to the log. The log will be presented to the user when the session is terminated.

As was seen in example 2, rules can also contain attributes that cause side-effects in addition to the 
mapping. Probably the most important attribute is readonly, which causes the destination to 
appear as write-protected even if the user is the owner of destination and the file system permission 
flags would allow writing to the file:

{prefix = "/lib", map_to = target_root, readonly = true}

Example: mapping rule 3.

When a destination has been marked with this attribute, an attempt to open it for writing will cause 
the call to fail and return error code EROFS, which signifies that the file system has been mounted 
as read only. 

The readonly attribute is used to enforce file system protection in several rules: For example, it 
should not be possible to modify the contents of the target root under normal conditions (see fig.4: 
target root is write protected during the development stage, as well as during program execution – it  
needs to be writable only during the program installation phase).

Reverse rules were briefly explained earlier in ch.2.3. Internally, Scratchbox 2 uses same kind of 
rules for forward and reverse mapping of paths. The only difference is that the reverse rules are 
automatically generated from the forward rules each time when a session is created (forward rules 
are maintained manually).

4.2 Exec policies and execution rules

The way how programs are started is controlled by exec policies in the rulesets. Scratchbox 2 insists 
that an exec policy must be present when a process wants to execute another program. If the new 
program belongs to a different "domain", then some settings may need to be changed; the new 
settings are defined by the exec policy. Also, the currently active exec policy may dictate how some 
path mappings are performed while the program is running.

In the simplest case, an empty exec policy is enough – the default behavior is enough for many 
cases. But in a more advanced setup, two or three different policies may be used:

• A “target policy” specifies settings for starting binaries that belong to the target system. For 
example, if the target system uses the same CPU architecture as the host, the exec policy 
lists the location of dynamic libraries that should be used (dynamic libraries should not be 
used from the default locations (/lib), because the default directories contain libraries that 
belong to the host OS)

• A tools policy specifies settings for “tools” (see fig.5).

• A host policy may also be used, it practically just says that no special settings are needed for 
programs that belong to the host OS.

The exec policy may be selected by the mapping rule which is used to map the pathname of the 



Scratchbox 2 Internals 24

program to be executed. However, to avoid adding the exec_policy attribute to every mapping 
rule, a policy selection table can be used. It specifies exec policies based on locations in the file  
system (based on real locations = destination paths, not on source paths).

Following examples are from the “devel” mapping mode. Variables at the right side of each 
assignment depend on the target system, and values are assigned to them whenever a session is 
created:

exec_policy_target = {
   name = "Rootstrap",
   native_app_ld_so = devel_mode_target_ld_so,
   native_app_ld_so_supports_argv0 = conf_target_ld_so_supports_argv0,
   native_app_ld_library_path = devel_mode_target_ld_library_path,
   native_app_locale_path = conf_target_locale_path,
}

Example: exec policy 1.

A rule which closely resembles mapping rules is used to glue this exec policy to all binaries that 
need it:

{ prefix = target_root, exec_policy = exec_policy_target }

Example: Binding rule: From destination path to exec policy.

As can be seen, this policy defines only settings for “native applications”, i.e. applications that have 
the same CPU architecture as the host computer. Incompatible target architectures are actually  
slightly easier to handle: Less configurable items are needed, the target can be identified by reading 
CPU type from the executable, and the CPU emulator can usually set up things quite well without 
lots of external configuration items.

The exec policy may also be needed while the program is running: There are cases, where 
pathnames need to be mapped differently, based on the type of the binary which is running. (this 
concerns the development modes, i.e. the “blue” side of fig.4). The two most important cases are

1. Handling of the “locale” database, including the message catalogs. In practice this means 
that mapping of /usr/share/locale depends on the type of the running program. Target and 
tool binaries will need to be map it to their respective locations.

2. Handling of script language extensions,  namely, libraries and extensions of perl and python.  
For example, /usr/lib/perl must be mapped to the target root when target's perl is running, 
but to the corresponding place in the tools directory when the other perl is running.

4.3 Testing out and displaying the results of mapping

Scratchbox 2 has an utility program which can be used to examine mapping results: “sb2-show” 
performs the mappings, and then displays the results without actually using them. Note that sb2-
show can only be used inside a session: 

$ sb2                  <- (create the session)
[SB2 devel ARM_target] lauri@sbox2 workdir $ sb2-show path /usr/include
/usr/include => /home/lauri/rootstraps/ARM/usr/include (readonly)

Example: using sb2-show to display pathname mappings.

Also, sb2-show can be used to examine what will be actually executed when one of the exec-class 
funtions is called:



Scratchbox 2 Internals 25

[SB2 devel ARM_target] lauri@sbox2 workdir $ sb2-show exec /usr/bin/make
(this produces 17 lines of output when executed on the author's development machine – the relevant part is 
that “make” is executed as host-compatible program)
[SB2 devel ARM_target] lauri@sbox2 workdir $ sb2-show exec ./testprogram
(shows how “./testprogram” will be executed  with Qemu)

Example: using sb2-show to display how programs get executed, really.



Scratchbox 2 Internals 26

5. Scratchbox 2 “core”: The Preload Library
Internal operation of Scratchbox 2 is based on preloading a library to each running process. That 
library, called libsb2.so or simply the “core”, contains everything that is needed at runtime. All 
mapping operations etc. are performed by the core library: Scratchbox 2 does not use daemons or 
other external components that would be contacted on demand. 

[version 2.3 added a daemon (“sb2d”) but it isn't used for mapping operations: Instead it is used  
for updating the virtual permission database, which replaced “fakeroot”. And the amount of IPC  
with the daemon was minimized: Processes are able to read virtualized permission information  
without contacting the daemon]

The mechanism which is used to load such libraries is called library preloading. It is a standard 
feature of most modern Unix-like operating systems11. In practice it means that the dynamic 
linker/loader (ld.so) which loads programs to memory will also load the preload library and use 
symbols of that library to override symbols from the default libraries; Scratchbox 2 uses this 
possibility extensively. 

Architecture of the core library is presented in fig.9. Following chapters will briefly present the 
purpose and function of each component of the libsb2.so library.

[other changes in version 2.3: The Lua interpreter has been eliminated from libsb2.so => all  
modules which are marked as “(Lua)” in fig 9. have been re-implemented in C. Also, there are new  
subsystems: Virtual persmission system and network address translation are not present in fig.9,  
which refers only to Scratchbox 2 versions 2.0 – 2.2]

11 At least Linux, Solaris and Mac OS X are known to support this mechanism. However, currently Scratchbox 2 can 
only be used on Linux – porting it to other platforms should be quite easy. But remember that other components are 
also needed to create a fully functional SDK – currently the lack of decent target emulator for other operating  
systems seems to be the biggest obstacle to the porting work (the user mode of Qemu is still quite Linux specific – it 
does not emulate system calls, it just translates them from the target architecture to calls to host system kernel)



Scratchbox 2 Internals 27

Fig. 9. Architecture of the Scratchbox 2 preload library = “the core”

API

Path resolution:
Replaces OS's path

resolution logic
(C)

Path mapping
logic
(Lua)

Exec logic
(Lua)

Ruleset
(path mapping
and exec rules)

Exec engine
(C)

/proc simulation

Replacements for
some C library

functions (glob(),
locale db, etc.)

Open file descriptor
names

Path reversing
logic
(Lua)

Postprocessors

wrappers

libsb2
Initialization

Exec subsystemFile System
operations
subsystem

Interface layer

Logging / debugging
support routines

Standard C library function callsSB2 internal management interface

Standard C library functions / standard system calls

Scratchbox 2 “core”: The libsb2 preload library

GATE functions



Scratchbox 2 Internals 28

5.1 The interface layer

The interface to the Scratchbox 2 core library is completely defined by an interface specification  
file. Both the actual interface code and the list of functions that will be exported from the library are  
generated with a small interface generator tool (included with the Scratchbox 2 source code).

Three types of definitions can exist in the interface specification file: API/ABI calls from table 1 are  
defined as needing either a “wrapper” or “gate” function. Wrappers are used when the interface 
generator is capable of creating everything that is needed to handle a function, and gates are used 
for more complex cases. Additionally, internal management interface functions (used by sb2-show) 
is defined as “exported” functions in the specification file.

A wrapper performs specified parameter transformations (usually path remapping) and then calls 
the “real" function with the same name from the C library (glibc). For example, this is all that is  
needed to get the stat() function handled by Scratchbox 2:

WRAP: int stat(const char *file_name, struct stat *buf) : map(file_name)

Example: Interface specification for the stat() function

The example above defines that the wrapper utilizes the map() modifier; parameter file_name points 
to a pathname which is subject to path mapping. The interface generator creates C code which calls  
the mapping logic for the parameter, calls the logger if logging is enabled, looks up the real function 
from the C library, calls it, and finally returns result to the application. Nothing else is needed in this  
case. Majority of the functions listed in table 1 can be handled with wrappers.

“Gates” are used for the remaining, more complex API functions: These are otherwise like 
wrappers, but the real function from the C library is not directly called. Instead the generated code 
makes a call to a hand-coded function, which may do additional steps before the real function is 
called or even replace the functionality of the real function completely. For example, this definition  
creates a gate function for execl():

GATE: int execl(const char *path, const char *arg, ...) : pass_va_list

Example: Interface specification for the execl() function

The automatically generated part will do similar preparatory steps as a wrapper will do, but once all  
such preparations have been done, the generated function will make a call to execl_gate(), a hand-
coded function which belongs to the exec subsystem. execl_gate() may then decide if it calls the 
real execl() or does something else instead (in fact, it does “something” else – see ch.5.3. below).

Another modifier can be seen in the second example above: pass_va_list marks that a variable 
argument list is present and needs to be relayed as a va_list object. The interface generator accepts 
about a dozen other modifiers for wrappers and gates. Please see the source code of the interface 
generator (gen-interface.pl) for details. All possible modifiers are documented in a long comment in 
the beginning of that Perl script.

5.2 File system operations subsystem

File system operations subsystem is responsible for all path mapping operations. It consists of two 
layers:

• First one is a replacement for the path resolution12 logic which usually belongs to the 
operating system. Scratchbox 2 must provide a replacement for it to make symbolic links 
work correctly. This part has been implemented in C, as there was little implementation 

12 See chapter 2.3 and manual page path_resolution of Linux



Scratchbox 2 Internals 29

freedom – it must closely mimic operating system's behavior.

• Second layer is the actual path mapping engine, which executes the mapping rules. In 
versions 2.0 - 2.2 it has been implemented in Lua [version 2.3 implements it in C]. Path 
mapping engine has two sides, the forward mapping logic and the reversing logic.

The architecture diagram also shows a module called /proc simulation. Purpose of it is to provide 
replacements for some files from the /proc special filesystem that would otherwise be incompatible 
with the rest of the virtualized environment:

For example,  /proc/self/exe is a special symbolic link which points to the location of the running 
program in the filesystem. Without the /proc simulation module programs could find out from it the 
real locations of executables. And, typically some Perl scripts do read the value to find out location 
of the Perl interpreter. Even if the real /proc/self/exe might point to something like 
/home/user/rootstrap/usr/bin/perl, the running binary must see it pointing to /usr/bin/perl and that is 
just what the /proc simulation module does: It fixes the problem by providing a replacement 
symbolic link which points to the reverse-mapped Perl interpreter location.

5.3 Exec Subsystem

The execution subsystem handles the “exec family” library calls: execl(), execle(), execlp(), execv(),  
execve() or execvp(). Processing of these functions is not as straightforward as plain path mapping 
is, because both the type of the binary to be executed and the exec policies can affect the results.  
Just as was the case with the path mapping subsystem, the exec subsystem is also divided to two 
layers: “engineroom” which is implemented in C, and also here the actual exec mapping logic is  
written in Lua [version 2.3 implements it in C].

Brief description of the algorithm follows, with built-in references to the implementation:

First, Exec preprocessing takes place. The purpose is to determine what file needs to be executed. 
And that might very well be something else than what the application requested. Arguments may 
also be added, deleted, or modified during preprocessing. For example, an attempt to run 
/usr/bin/gcc will be replaced by a path to the cross compiler in the development-oriented mapping 
modes (e.g. the result may be /opt/tools/bin/arm-linux-gcc). The cross-compiler also typically needs 
a few more flags to work correctly (please use sb2-show exec to see the actual outcome)

Second, the system needs to determine where the file is, i.e. the real destination path is calculated by 
making a call to the regular path mapping engine. A notable side-effect of that is that the mapping 
logic may also return name of the exec policy which will be used during step 4.

Third, once the real location of the file is known, the system finds out the type of the program. This 
involves opening the file and examining it.

Step four consists of deciding how to do the actual execution. There are basically three possible 
cases:

1. For scripts (files starting with #!), script interpreter name will be read from the file, mapped 
to get the real location of the interpreter, and then the exec processing logic is restarted from 
step 1 for the interpreter, with the path to the script as an argument.

2. For native binaries, an additional call to an exec post-processing function will be made, 
because the type of the file is not enough  to specify the environment that needs to be used 
for the file: This is the place where the exec policy rules will be applied. There are at least  
four different cases where additional settings may need to be applied:
2a) Native binaries that are compiled for the host system can be started directly
2b) Programs from the tools collection may need to load dynamic libraries from a different 



Scratchbox 2 Internals 30

place (e.g. /opt/tools_root/bin/ls may need to use libraries from /opt/tools_root/lib, instead of 
using them from /lib). This is implemented by making an explicit call to the dynamic loader 
(ld.so) to start the program, with additional options for ld.so.
2c) If the target architecture is the same as the host architecture, binaries may also need 
special settings. This also uses an explicit call to ld.so.
2d) Static binaries may be executed directly, or by another Qemu (depends on configuration)

3. Target binaries (when target CPU architecture is incompatible with host CPU architecture) 
are started in "cpu transparency mode", which typically means that Qemu is used to execute 
them.

Step five is to make a call to the real exec function, execve()13,  which will make the system call to 
the kernel.

5.4 Internal databases: The ruleset and the open file descriptor table

The Scratchbox 2 core needs two internal databases: The first holds the ruleset, which is practically 
constant information, and the second one is open file descriptor table, which is a lookup table from 
file descriptor numbers to pathnames. The latter is needed for proper implementation of *at-class 
functions (openat(), fchmodat(), etc). Performing correct pathname mappings for these functions is 
only possible when the file descriptor number can be converted back to a file name.

[version 2.3 keeps the ruleset, as well as several configuration variables in a simple shared memory  
database, the “ruletree”. It can be printed out with utils/sb2-ruletree for debugging purposes.]

5.5 Supporting routines: Logging, initialization etc.

The Scratchbox 2 core library is automatically initialized when it is used. No explicit initialization  
is required.14 

Scratchbox 2 core also provides quite extensive logging capabilities. The logger is normally always 
active, but only messages at logging levels error and warning will be written to the log. For 
diagnostics purposes logging level can be changed at session creation time; check the -L and -d  
options of the sb2 command line tools.

13 That is right: All six different exec family functions end up calling execve(). The other five are practically only 
shortcuts to execve().

14 In fact, it was found out the hard way that even if the dynamic library system makes it possible to introduce library 
constructor and destructor functions (called _init() and _fini()), these are not useful in practice: Execution order is 
not guaranteed and the library may be entered even before the constructor function is called. Fortunately it was easy  
to add protection against this situation, thanks to the completely generated interface layer.



Scratchbox 2 Internals 31

6. Native Binaries, LD_PRELOAD and Scratchbox2
While execution of foreign binaries with Qemu in Scratchbox 2 is straightforward, easy, and 
relatively safe, architecturally compatible binaries have presented some more or less hard 
challenges. Solutions to these should be understood by anyone who wants to implement a full-
featured SDK, or whose target system is architecturally compatible with the host. Even if the target 
uses a foreign architecture, the tools that are used with Scratchbox 2 might not be compiled against  
the host system libraries and are treated as target-style architecturally compatible binaries.

The term architecturally compatible binary refers to a program that is directly compatible with the 
host system CPU: A binary that can be executed without any CPU emulation, or even outside of 
Scratchbox 2 sessions in some cases15.

Linux, and eglibc/glibc (standard C library) in particular, present some challenges to proper 
execution of such programs. This chapter contains brief descriptions of these challenges and also 
introduces the solutions that are currently in use within Scratchbox 2. Some solutions are based on 
small patches to eglibc/glibc;  these patches are shipped with Scratchbox 2 sources (in the external-
patches directory). The patches are generic enough so that they could be added to the official 
sources, but that hasn't been done yet.

6.1 Static binaries

Scratchbox 2 depends on the dynamic library preloading mechanism. Naturally, that is not available 
with static binaries - which don't load any dynamic libraries anyway. Fortunately this is a minor 
problem in practice: Almost all Linux programs are dynamically linked.

There are three well-known exceptions:

• The dynamic linker itself is a statically linked program. Environment variables and 
command line options can be used to alter some operations, but unfortunately not all: The 
standard dynamic linker does not have enough features for precise operation that Scratchbox 
2 needs, but adding proper support to it was not a difficult task to do. The next section 
describes this in more detailed level.

• ldconfig is a statically linked binary (it is used to maintain dynamic library configuration in 
the system). By default, it uses absolute pathnames to access the configuration files.
A really easy workaround exists: There is a command-line option for ldconfig that can be 
used to specify a prefix which will be added to the configuration file pathnames. Scratchbox 
2 provides a wrapper which will add that option whenever ldconfig is executed.
The tough part is that latest versions of glibc have been shipped with a buggy ldconfig: Just 
this option has been broken so that it only works for the root user. A patch for this is shipped 
with Scratchbox 2 sources; it is needed for glibc 2.8 and later, at least (the option works in 
that ldconfig which shipped with glibc 2.5; we don't know about versions 2.6 and 2.7).

• Valgrind is a software analysis tool that is statically linked. It is currently incompatible with 
Scratchbox 2; chroot must still be used with it.

15 If the host system contains all dynamic libraries that are needed, it is possible to just call one of the exec functions 
and the binary will be started outside of Scratchbox 2. However, the host system provides the dynamic linker in this 
case, and that will use the dynamic libraries from the host. Those are not necessarily in sync with the target system. 
We have learned that in most cases, but not always, the programs seem to run without problems...but sometimes 
they do something unexpected (crash, maybe).



Scratchbox 2 Internals 32

Why this is not a problem with foreign binaries: Foreign binaries are executed with Qemu, which is 
a dynamically linked binary itself, and relies on the Scratchbox 2 core. Qemu translates all system 
calls that the foreign binary makes – including calls from statically linked foreign binaries – and 
ends up calling the relevant functions from the Scratchbox 2 core in any case. 

6.2 Challenges caused by the dynamic linker (ld.so)

There are two ways how the dynamic linker can be started:

First, it can be started implicitly by the Linux kernel. Each dynamically linked program contains  
path to the dynamic linker that should be used (for example, for the x86 architecture, that path is  
usually /lib/ld-linux.so.2). The kernel finds that path from the file, maps the dynamic linker to 
memory, and jumps to it.

The second way of starting the dynamic linker is to start it explicitly, just as any other statically  
linked program is started. In this case the path to the program that will be loaded is provided by a 
command line argument. This method was probably originally intended for testing purposes, but it 
is in fact the only way how execution of architecturally compatible binaries can be done safely: 
Such binaries might contain the exactly same, absolute path to the dynamic linker as what is used 
on the host system. However, typically host's dynamic linker can not be used to load target's 
binaries when target's libraries must be used16

So, when the exec policy says that a host-compatible binary really belongs to the host, Scratchbox 2 
uses the first approach and lets the kernel start the dynamic linker. But when the policy specifies 
that the binary belongs to the target, the second way is used. Target's dynamic linker is started 
explicitly. This presents some additional challenges:

First, the dynamic linker wants to access some configuration files while it is loading the libraries.  
The stock version didn't have any options to change all of these paths; this is one thing that had to 
be patched.

Second, the files that are loaded (both the binary and additional libraries from the target system) 
may contain even more absolute paths: “RUNPATH” and “RPATH” options inside the files can 
point to directories, which will be searched during the library lookup process, in addition to what 
the LD_LIBRARY_PATH environment variable specifies. There was no way to alter these paths, 
but we have added an option for it as well.17

The third challenge was related to semantics of the exec calls. The problem is that the explicit, 
command-line way of starting the dynamic linker looses one parameter that was intended for the 
application. There is a patch for this problem, too (this is the so-called argv0 option patch).

What happens without our patches: Scratchbox 2 detects (at session set-up time) if the target system 
has a dynamic linker that has the patches. If it doesn't, the linker is still used, but some things may 
not work as expected (e.g. files that contain RPATH options may cause libraries to be loaded from 
the host filesystem, etc)

16 glibc's dynamic linker seems to be very incompatible with other versions of itself – that is, if your glibc's version is 
x.y.z, you must use dynamic linker which was shipped with that version. Host's linker can be used only if the C 
library comes from the host, too. This is yet another thing that was found out the hard way during development.

17 The stock ld.so does have an option (--inhibit-rpath) for ignoring RUNPATHs and RPATHs. It is certainly better 
than nothing, but not enough, and can be easily applied only to the binary itself – not to libraries that are loaded 
indirectly. Anyway, Scratchbox 2 uses that option if the detects that the dynamic linker does not have our –rpath-
prefix option.



Scratchbox 2 Internals 33

6.3 Built-in absolute pathnames in glibc

Glibc contains many functions that will open files or do something else with built-in absolute 
pathnames. However, the core library of Scratchbox 2 can only make operations with pathnames 
that are generated outside of glibc – it can not alter anything that is private and internal to Glibc  
itself (see fig.7). It can be said that the Scratchbox 2 core is at too high level in the software stack – 
the correct place would be between the system call interface and the C library, but that can't be done 
with the current preloading mechanisms and current library structure (because the system calls are 
implemented inside glibc)

One example about this problem is the “locale” database: Glibc loads error messages etc. language-
specific strings from the “locale” database. The default location of the database has been built into 
the library. This is not acceptable, because the target- and host systems might need different 
databases.

Fortunately the “locale” database can be easily relocated without any changes to the library.  An 
environment variable exists for this: It can be used to define the path to the database18. Scratchbox 2 
sets that variable automatically always. There are some other subsystems, that are treated like that,  
too. 

However, not all subsystems of glibc have this property. One example is that path to the name 
system service configuration file19 is hard-coded to Glibc, and couldn't be changed by any 
environment variables. We have introduced a new variable for this (yet again, the patch is shipped 
with Scratchbox 2 sources).  

Why this is not a problem with foreign binaries: Note that even if foreign binaries also use Glibc, 
which has been compiled from the same sources and suffers from the same anomalies, there are no 
problems with it. In this case the Scratchbox 2 core operates at lower level; all pathnames that are 
passed from the C library to Qemu, and path translation takes place after that (see fig.8)

6.4 Versions of glibc and target-specific Scratchbox 2 core libraries

The host operating system and an architecturally compatible target system might use different 
versions of the C library; this is quite natural.

The way how C programs are compiled, how the glibc has been designed, and how the Scratchbox 
2 core library needs to interact with the C library,  all mean that the Scratchbox 2 core is somewhat 
tightly bound to the C library. This has presented some binary-compatibility challenges (there are 
questions about library versioning, etc), but there is also a really easy solution that has practically 
eliminated all binary-compatibility issues:

The best way to ensure full compatibility between the Scratchbox 2 core and the target system's C 
library is to use target-specific versions of the Scratchbox 2 core library for each target. This means 
that the core library should be compiled separately for the host and the target systems, starting from 
the same sources. Scratchbox 2 will detect such target-specific core libraries at session setup time, 
and can execute different programs with different sets of libraries (based on the exec policy settings. 
Details about how the setup is done can be found in the “sb2” script.)

18 Unfortunately there are two formats for the “locale” database: packed and unpacked. The environment variable can  
only point to an unpacked database; There is no obvious reason why Glibc has this limitation, but it means that 
packed databases must be expanded before the “locale” databases can be used with Scratchbox2.

19 Usually /etc/nsswitch.conf.


	Preface to the first (public) edition
	Foreword and Introduction to Scratchbox 2
	1. Scratchbox 2, a Cross-Compilation Toolkit
	1.1 Related components: Other building blocks for a complete SDK
	1.2 A bit of history: Scratchbox 1 vs. Scratchbox 2

	2. Operation of Scratchbox 2
	2.1 Targets and Sessions: User-level virtualization in practice
	2.2 Typical workflow and the various mapping modes
	2.3 Processing of pathnames (“mapping” of files)
	2.4 Execution of programs

	3. Interfaces
	3.1 Command-line interfaces
	3.2 Application (binary) interface

	4. The Rule Engine: Internal Configuration of Scratchbox 2
	4.1 Path mapping rules
	4.2 Exec policies and execution rules
	4.3 Testing out and displaying the results of mapping

	5. Scratchbox 2 “core”: The Preload Library
	5.1 The interface layer
	5.2 File system operations subsystem
	5.3 Exec Subsystem
	5.4 Internal databases: The ruleset and the open file descriptor table
	5.5 Supporting routines: Logging, initialization etc.

	6. Native Binaries, LD_PRELOAD and Scratchbox2
	6.1 Static binaries
	6.2 Challenges caused by the dynamic linker (ld.so)
	6.3 Built-in absolute pathnames in glibc
	6.4 Versions of glibc and target-specific Scratchbox 2 core libraries


