ntp.c 15.2 KB
Newer Older
1 2 3 4
/*
 *
 *  Connection Manager
 *
5
 *  Copyright (C) 2007-2014  Intel Corporation. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
33
#include <sys/timex.h>
34 35 36 37
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
38
#include <netdb.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

#include <glib.h>

#include "connman.h"

struct ntp_short {
	uint16_t seconds;
	uint16_t fraction;
} __attribute__ ((packed));

struct ntp_time {
	uint32_t seconds;
	uint32_t fraction;
} __attribute__ ((packed));

struct ntp_msg {
	uint8_t flags;			/* Mode, version and leap indicator */
	uint8_t stratum;		/* Stratum details */
	int8_t poll;			/* Maximum interval in log2 seconds */
	int8_t precision;		/* Clock precision in log2 seconds */
	struct ntp_short rootdelay;	/* Root delay */
	struct ntp_short rootdisp;	/* Root dispersion */
	uint32_t refid;			/* Reference ID */
	struct ntp_time reftime;	/* Reference timestamp */
	struct ntp_time orgtime;	/* Origin timestamp */
	struct ntp_time rectime;	/* Receive timestamp */
	struct ntp_time xmttime;	/* Transmit timestamp */
} __attribute__ ((packed));

#define OFFSET_1900_1970  2208988800UL	/* 1970 - 1900 in seconds */

70
#define STEPTIME_MIN_OFFSET  0.4
71 72

#define LOGTOD(a)  ((a) < 0 ? 1. / (1L << -(a)) : 1L << (int)(a))
73 74 75 76
#define NSEC_PER_SEC  ((uint64_t)1000000000ULL)
#ifndef ADJ_SETOFFSET
#define ADJ_SETOFFSET		0x0100  /* add 'time' to current time */
#endif
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

#define NTP_SEND_TIMEOUT       2
#define NTP_SEND_RETRIES       3

#define NTP_FLAG_LI_SHIFT      6
#define NTP_FLAG_LI_MASK       0x3
#define NTP_FLAG_LI_NOWARNING  0x0
#define NTP_FLAG_LI_ADDSECOND  0x1
#define NTP_FLAG_LI_DELSECOND  0x2
#define NTP_FLAG_LI_NOTINSYNC  0x3

#define NTP_FLAG_VN_SHIFT      3
#define NTP_FLAG_VN_MASK       0x7

#define NTP_FLAG_MD_SHIFT      0
#define NTP_FLAG_MD_MASK       0x7
#define NTP_FLAG_MD_UNSPEC     0
#define NTP_FLAG_MD_ACTIVE     1
#define NTP_FLAG_MD_PASSIVE    2
#define NTP_FLAG_MD_CLIENT     3
#define NTP_FLAG_MD_SERVER     4
#define NTP_FLAG_MD_BROADCAST  5
#define NTP_FLAG_MD_CONTROL    6
#define NTP_FLAG_MD_PRIVATE    7

102 103 104
#define NTP_FLAG_VN_VER3       3
#define NTP_FLAG_VN_VER4       4

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define NTP_FLAGS_ENCODE(li, vn, md)  ((uint8_t)( \
                      (((li) & NTP_FLAG_LI_MASK) << NTP_FLAG_LI_SHIFT) | \
                      (((vn) & NTP_FLAG_VN_MASK) << NTP_FLAG_VN_SHIFT) | \
                      (((md) & NTP_FLAG_MD_MASK) << NTP_FLAG_MD_SHIFT)))

#define NTP_FLAGS_LI_DECODE(flags)    ((uint8_t)(((flags) >> NTP_FLAG_LI_SHIFT) & NTP_FLAG_LI_MASK))
#define NTP_FLAGS_VN_DECODE(flags)    ((uint8_t)(((flags) >> NTP_FLAG_VN_SHIFT) & NTP_FLAG_VN_MASK))
#define NTP_FLAGS_MD_DECODE(flags)    ((uint8_t)(((flags) >> NTP_FLAG_MD_SHIFT) & NTP_FLAG_MD_MASK))

#define NTP_PRECISION_S    0
#define NTP_PRECISION_DS   -3
#define NTP_PRECISION_CS   -6
#define NTP_PRECISION_MS   -9
#define NTP_PRECISION_US   -19
#define NTP_PRECISION_NS   -29

static guint channel_watch = 0;
static struct timespec mtx_time;
static int transmit_fd = 0;

static char *timeserver = NULL;
126
static struct sockaddr_in6 timeserver_addr;
127 128 129 130
static gint poll_id = 0;
static gint timeout_id = 0;
static guint retries = 0;

131
static void send_packet(int fd, struct sockaddr *server, uint32_t timeout);
132 133 134

static void next_server(void)
{
135
	if (timeserver) {
136 137 138 139 140 141 142 143 144
		g_free(timeserver);
		timeserver = NULL;
	}

	__connman_timeserver_sync_next();
}

static gboolean send_timeout(gpointer user_data)
{
145 146
	uint32_t timeout = GPOINTER_TO_UINT(user_data);

147
//	DBG("send timeout %u (retries %d)", timeout, retries);
148 149 150 151

	if (retries++ == NTP_SEND_RETRIES)
		next_server();
	else
152
		send_packet(transmit_fd, (struct sockaddr *)&timeserver_addr, timeout << 1);
153 154 155 156

	return FALSE;
}

157
static void send_packet(int fd, struct sockaddr *server, uint32_t timeout)
158 159 160 161
{
	struct ntp_msg msg;
	struct timeval transmit_timeval;
	ssize_t len;
162 163 164
	void * addr;
	int size;
	char ipaddrstring[INET6_ADDRSTRLEN + 1];
165 166 167 168 169 170 171 172

	/*
	 * At some point, we could specify the actual system precision with:
	 *
	 *   clock_getres(CLOCK_REALTIME, &ts);
	 *   msg.precision = (int)log2(ts.tv_sec + (ts.tv_nsec * 1.0e-9));
	 */
	memset(&msg, 0, sizeof(msg));
173 174
	msg.flags = NTP_FLAGS_ENCODE(NTP_FLAG_LI_NOTINSYNC, NTP_FLAG_VN_VER4,
	    NTP_FLAG_MD_CLIENT);
175
	msg.poll = 10;
176 177
	msg.precision = NTP_PRECISION_S;

178 179 180 181 182 183 184 185 186 187
	if (server->sa_family == AF_INET) {
		size = sizeof(struct sockaddr_in);
		addr = (void *)&(((struct sockaddr_in *)&timeserver_addr)->sin_addr);
	} else if (server->sa_family == AF_INET6) {
		size = sizeof(struct sockaddr_in6);
		addr = (void *)&timeserver_addr.sin6_addr;
	} else {
		connman_error("Family is neither ipv4 nor ipv6");
		return;
	}
188 189 190 191 192 193 194 195

	gettimeofday(&transmit_timeval, NULL);
	clock_gettime(CLOCK_MONOTONIC, &mtx_time);

	msg.xmttime.seconds = htonl(transmit_timeval.tv_sec + OFFSET_1900_1970);
	msg.xmttime.fraction = htonl(transmit_timeval.tv_usec * 1000);

	len = sendto(fd, &msg, sizeof(msg), MSG_DONTWAIT,
196 197
						server, size);

198 199
	if (len < 0) {
		connman_error("Time request for server %s failed (%d/%s)",
200 201
			inet_ntop(server->sa_family, addr, ipaddrstring, sizeof(ipaddrstring)),
			errno, strerror(errno));
202 203 204 205 206 207 208 209

		if (errno == ENETUNREACH)
			__connman_timeserver_sync_next();

		return;
	}

	if (len != sizeof(msg)) {
210 211
		connman_error("Broken time request for server %s",
			inet_ntop(server->sa_family, addr, ipaddrstring, sizeof(ipaddrstring)));
212 213 214 215
		return;
	}

	/*
216
	 * Add an exponential retry timeout to retry the existing
217 218 219 220
	 * request. After a set number of retries, we'll fallback to
	 * trying another server.
	 */

221 222
	timeout_id = g_timeout_add_seconds(timeout, send_timeout,
					GUINT_TO_POINTER(timeout));
223 224 225 226
}

static gboolean next_poll(gpointer user_data)
{
227 228
	poll_id = 0;

229
	if (!timeserver || transmit_fd == 0)
230 231
		return FALSE;

232
	send_packet(transmit_fd, (struct sockaddr *)&timeserver_addr, NTP_SEND_TIMEOUT);
233 234 235 236 237 238

	return FALSE;
}

static void reset_timeout(void)
{
239
	if (timeout_id > 0) {
240
		g_source_remove(timeout_id);
241 242
		timeout_id = 0;
	}
243 244 245 246 247 248 249 250 251 252 253

	retries = 0;
}

static void decode_msg(void *base, size_t len, struct timeval *tv,
		struct timespec *mrx_time)
{
	struct ntp_msg *msg = base;
	double m_delta, org, rec, xmt, dst;
	double delay, offset;
	static guint transmit_delay;
254
	struct timex tmx = {};
255 256 257 258 259 260

	if (len < sizeof(*msg)) {
		connman_error("Invalid response from time server");
		return;
	}

261
	if (!tv) {
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
		connman_error("Invalid packet timestamp from time server");
		return;
	}

	DBG("flags      : 0x%02x", msg->flags);
	DBG("stratum    : %u", msg->stratum);
	DBG("poll       : %f seconds (%d)",
				LOGTOD(msg->poll), msg->poll);
	DBG("precision  : %f seconds (%d)",
				LOGTOD(msg->precision), msg->precision);
	DBG("root delay : %u seconds (fraction %u)",
			msg->rootdelay.seconds, msg->rootdelay.fraction);
	DBG("root disp. : %u seconds (fraction %u)",
			msg->rootdisp.seconds, msg->rootdisp.fraction);
	DBG("reference  : 0x%04x", msg->refid);

278 279 280 281
	if (!msg->stratum) {
		/* RFC 4330 ch 8 Kiss-of-Death packet */
		uint32_t code = ntohl(msg->refid);

282
		DBG("Skipping server %s KoD code %c%c%c%c",
283 284 285 286 287 288
			timeserver, code >> 24, code >> 16 & 0xff,
			code >> 8 & 0xff, code & 0xff);
		next_server();
		return;
	}

289 290 291 292 293 294 295
	transmit_delay = LOGTOD(msg->poll);

	if (NTP_FLAGS_LI_DECODE(msg->flags) == NTP_FLAG_LI_NOTINSYNC) {
		DBG("ignoring unsynchronized peer");
		return;
	}

296 297 298 299 300 301 302 303 304

	if (NTP_FLAGS_VN_DECODE(msg->flags) != NTP_FLAG_VN_VER4) {
		if (NTP_FLAGS_VN_DECODE(msg->flags) == NTP_FLAG_VN_VER3) {
			DBG("requested version %d, accepting version %d",
				NTP_FLAG_VN_VER4, NTP_FLAGS_VN_DECODE(msg->flags));
		} else {
			DBG("unsupported version %d", NTP_FLAGS_VN_DECODE(msg->flags));
			return;
		}
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	}

	if (NTP_FLAGS_MD_DECODE(msg->flags) != NTP_FLAG_MD_SERVER) {
		DBG("unsupported mode %d", NTP_FLAGS_MD_DECODE(msg->flags));
		return;
	}

	m_delta = mrx_time->tv_sec - mtx_time.tv_sec +
		1.0e-9 * (mrx_time->tv_nsec - mtx_time.tv_nsec);

	org = tv->tv_sec + (1.0e-6 * tv->tv_usec) - m_delta + OFFSET_1900_1970;
	rec = ntohl(msg->rectime.seconds) +
			((double) ntohl(msg->rectime.fraction) / UINT_MAX);
	xmt = ntohl(msg->xmttime.seconds) +
			((double) ntohl(msg->xmttime.fraction) / UINT_MAX);
	dst = tv->tv_sec + (1.0e-6 * tv->tv_usec) + OFFSET_1900_1970;

	DBG("org=%f rec=%f xmt=%f dst=%f", org, rec, xmt, dst);

	offset = ((rec - org) + (xmt - dst)) / 2;
	delay = (dst - org) - (xmt - rec);

	DBG("offset=%f delay=%f", offset, delay);

	/* Remove the timeout, as timeserver has responded */

	reset_timeout();

	/*
	 * Now poll the server every transmit_delay seconds
	 * for time correction.
	 */
	if (poll_id > 0)
		g_source_remove(poll_id);

	DBG("Timeserver %s, next sync in %d seconds", timeserver, transmit_delay);

	poll_id = g_timeout_add_seconds(transmit_delay, next_poll, NULL);

	if (offset < STEPTIME_MIN_OFFSET && offset > -STEPTIME_MIN_OFFSET) {
345 346 347 348 349 350 351 352 353
		tmx.modes = ADJ_STATUS | ADJ_NANO | ADJ_OFFSET | ADJ_TIMECONST | ADJ_MAXERROR | ADJ_ESTERROR;
		tmx.status = STA_PLL;
		tmx.offset = offset * NSEC_PER_SEC;
		tmx.constant = msg->poll - 4;
		tmx.maxerror = 0;
		tmx.esterror = 0;

		connman_info("ntp: adjust (slew): %+.6f sec", offset);
	} else {
354
		tmx.modes = ADJ_STATUS | ADJ_NANO | ADJ_SETOFFSET | ADJ_MAXERROR | ADJ_ESTERROR;
355

356 357 358
		/* ADJ_NANO uses nanoseconds in the microseconds field */
		tmx.time.tv_sec = (long)offset;
		tmx.time.tv_usec = (offset - tmx.time.tv_sec) * NSEC_PER_SEC;
359 360
		tmx.maxerror = 0;
		tmx.esterror = 0;
361

362 363 364 365
		/* the kernel expects -0.3s as {-1, 7000.000.000} */
		if (tmx.time.tv_usec < 0) {
			tmx.time.tv_sec  -= 1;
			tmx.time.tv_usec += NSEC_PER_SEC;
366 367
		}

368 369
		connman_info("ntp: adjust (jump): %+.6f sec", offset);
	}
370

371 372 373 374
	if (NTP_FLAGS_LI_DECODE(msg->flags) & NTP_FLAG_LI_ADDSECOND)
		tmx.status |= STA_INS;
	else if (NTP_FLAGS_LI_DECODE(msg->flags) & NTP_FLAG_LI_DELSECOND)
		tmx.status |= STA_DEL;
375

376 377 378
	if (adjtimex(&tmx) < 0) {
		connman_error("Failed to adjust time");
		return;
379
	}
380 381 382

	DBG("interval/delta/delay/drift %fs/%+.3fs/%.3fs/%+ldppm",
		LOGTOD(msg->poll), offset, delay, tmx.freq / 65536);
383 384 385 386 387 388
}

static gboolean received_data(GIOChannel *channel, GIOCondition condition,
							gpointer user_data)
{
	unsigned char buf[128];
389
	struct sockaddr_in6 sender_addr;
390 391 392 393 394 395 396 397
	struct msghdr msg;
	struct iovec iov;
	struct cmsghdr *cmsg;
	struct timeval *tv;
	struct timespec mrx_time;
	char aux[128];
	ssize_t len;
	int fd;
398 399 400
	int size;
	void * addr_ptr;
	void * src_ptr;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

	if (condition & (G_IO_HUP | G_IO_ERR | G_IO_NVAL)) {
		connman_error("Problem with timer server channel");
		channel_watch = 0;
		return FALSE;
	}

	fd = g_io_channel_unix_get_fd(channel);

	iov.iov_base = buf;
	iov.iov_len = sizeof(buf);

	memset(&msg, 0, sizeof(msg));
	msg.msg_iov = &iov;
	msg.msg_iovlen = 1;
	msg.msg_control = aux;
	msg.msg_controllen = sizeof(aux);
418 419
	msg.msg_name = &sender_addr;
	msg.msg_namelen = sizeof(sender_addr);
420 421 422 423 424

	len = recvmsg(fd, &msg, MSG_DONTWAIT);
	if (len < 0)
		return TRUE;

425 426 427 428 429 430 431 432 433 434 435 436 437 438
	if (sender_addr.sin6_family == AF_INET) {
		size = 4;
		addr_ptr = &((struct sockaddr_in *)&timeserver_addr)->sin_addr;
		src_ptr = &((struct sockaddr_in *)&sender_addr)->sin_addr;
	} else if (sender_addr.sin6_family == AF_INET6) {
		size = 16;
		addr_ptr = &((struct sockaddr_in6 *)&timeserver_addr)->sin6_addr;
		src_ptr = &((struct sockaddr_in6 *)&sender_addr)->sin6_addr;
	} else {
		connman_error("Not a valid family type");
		return TRUE;
	}

	if(memcmp(addr_ptr, src_ptr, size) != 0)
439 440
		return TRUE;

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	tv = NULL;
	clock_gettime(CLOCK_MONOTONIC, &mrx_time);

	for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
		if (cmsg->cmsg_level != SOL_SOCKET)
			continue;

		switch (cmsg->cmsg_type) {
		case SCM_TIMESTAMP:
			tv = (struct timeval *) CMSG_DATA(cmsg);
			break;
		}
	}

	decode_msg(iov.iov_base, iov.iov_len, tv, &mrx_time);

	return TRUE;
}

static void start_ntp(char *server)
{
	GIOChannel *channel;
463 464 465 466 467 468 469
	struct addrinfo hint;
	struct addrinfo *info;
	struct sockaddr * addr;
	struct sockaddr_in  * in4addr;
	struct sockaddr_in6 in6addr;
	int size;
	int family;
470
	int tos = IPTOS_LOWDELAY, timestamp = 1;
471
	int ret;
472

473
	if (!server)
474 475
		return;

476 477 478 479 480
	memset(&hint, 0, sizeof(hint));
	hint.ai_family = AF_UNSPEC;
	hint.ai_socktype = SOCK_DGRAM;
	hint.ai_flags = AI_NUMERICHOST | AI_PASSIVE;
	ret = getaddrinfo(server, NULL, &hint, &info);
481

482 483 484 485
	if (ret) {
		connman_error("cannot get server info");
		return;
	}
486

487 488 489
	family = info->ai_family;

	memcpy(&timeserver_addr, info->ai_addr, info->ai_addrlen);
490
	freeaddrinfo(info);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	memset(&in6addr, 0, sizeof(in6addr));

	if (family == AF_INET) {
		((struct sockaddr_in *)&timeserver_addr)->sin_port = htons(123);
		in4addr = (struct sockaddr_in *)&in6addr;
		in4addr->sin_family = family;
		addr = (struct sockaddr *)in4addr;
		size = sizeof(struct sockaddr_in);
	} else if (family == AF_INET6) {
		timeserver_addr.sin6_port = htons(123);
		in6addr.sin6_family = family;
		addr = (struct sockaddr *)&in6addr;
		size = sizeof(in6addr);
	} else {
		connman_error("Family is neither ipv4 nor ipv6");
506 507
		return;
	}
508 509 510 511 512

	DBG("server %s family %d", server, family);

	if (channel_watch > 0)
		goto send;
513

514
	transmit_fd = socket(family, SOCK_DGRAM | SOCK_CLOEXEC, 0);
515

516 517 518 519 520 521
	if (transmit_fd <= 0) {
                connman_error("Failed to open time server socket");
                return;
	}

	if (bind(transmit_fd, (struct sockaddr *) addr, size) < 0) {
522 523 524 525 526
		connman_error("Failed to bind time server socket");
		close(transmit_fd);
		return;
	}

527 528 529 530 531 532
	if (family == AF_INET) {
		if (setsockopt(transmit_fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)) < 0) {
			connman_error("Failed to set type of service option");
			close(transmit_fd);
			return;
		}
533 534 535 536 537 538 539 540 541 542
	}

	if (setsockopt(transmit_fd, SOL_SOCKET, SO_TIMESTAMP, &timestamp,
						sizeof(timestamp)) < 0) {
		connman_error("Failed to enable timestamp support");
		close(transmit_fd);
		return;
	}

	channel = g_io_channel_unix_new(transmit_fd);
543
	if (!channel) {
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		close(transmit_fd);
		return;
	}

	g_io_channel_set_encoding(channel, NULL, NULL);
	g_io_channel_set_buffered(channel, FALSE);

	g_io_channel_set_close_on_unref(channel, TRUE);

	channel_watch = g_io_add_watch_full(channel, G_PRIORITY_DEFAULT,
				G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_NVAL,
				received_data, NULL, NULL);

	g_io_channel_unref(channel);

send:
560
	send_packet(transmit_fd, (struct sockaddr*)&timeserver_addr, NTP_SEND_TIMEOUT);
561 562 563 564 565 566
}

int __connman_ntp_start(char *server)
{
	DBG("%s", server);

567
	if (!server)
568 569
		return -EINVAL;

570
	if (timeserver)
571 572 573 574 575 576 577 578 579 580 581 582 583
		g_free(timeserver);

	timeserver = g_strdup(server);

	start_ntp(timeserver);

	return 0;
}

void __connman_ntp_stop()
{
	DBG("");

584
	if (poll_id > 0) {
585
		g_source_remove(poll_id);
586 587
		poll_id = 0;
	}
588

589
	reset_timeout();
590 591 592 593 594 595 596

	if (channel_watch > 0) {
		g_source_remove(channel_watch);
		channel_watch = 0;
		transmit_fd = 0;
	}

597
	if (timeserver) {
598 599 600 601
		g_free(timeserver);
		timeserver = NULL;
	}
}